FibRestoration - Novel specialized probiotics for restoring a healthy fiber-degrading microbiome
The project aims to develop probiotics containing cellulose-degrading bacteria to enhance gut microbiome fiber degradation and improve human health, addressing a gap in current probiotic offerings.
Projectdetails
Introduction
Dietary fiber is well-recognized as beneficial to the gut microbiome and has repercussions on human health. Consequently, in recent years, alternative dietary lifestyles favoring the consumption of high amounts of dietary fibers have been proposed.
Problem Statement
In order to avoid digestive discomfort associated with the increased intake of dietary fiber, we propose to develop probiotics that will target cellulose, the main component of dietary fiber. Indeed, cellulose-degrading bacteria are absent both in the gut microbiomes of most human populations and in existing probiotics.
Project Objectives
During our proposed project, we will:
- Isolate unique fiber-degrading bacteria.
- Restore these bacteria in the human microbiome via the administration of probiotics.
Product Development
Thus, our products will comprise this bacterium either alone or in combination with other fiber-degrading strains. This will augment the fiber-degrading potential of the human gut microbiome with concomitant implications for human health.
Market Potential
Such probiotics will address the majority of global human populations and will constitute a niche in the global probiotics market, which is projected to further increase in the next decade.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 30-6-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- BEN-GURION UNIVERSITY OF THE NEGEVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Proteome-wide Functional Interrogation and Modulation of Gut Microbiome SpeciesThis project aims to identify and manipulate gut microbiome protein functions using high-throughput proteomics to develop targeted therapies for restoring microbial health. | ERC STG | € 1.499.980 | 2023 | Details |
Microbial Synthetic in vivo Cell Therapy SystemsThe MiStiC project aims to develop Clostridium leptum as a stable chassis for localized drug production and delivery, targeting colorectal cancer through engineered biosensors and natural product pathways. | ERC STG | € 1.499.938 | 2023 | Details |
Nanostructure formation during food protein digestion and influence on intestinal transportPRODIGEST aims to enhance sustainable food production by investigating the structural and mechanistic aspects of protein digestion to improve nutrient bioavailability and health outcomes. | ERC COG | € 2.355.741 | 2023 | Details |
SYNergize: Understanding spore-forming gut bacteria biology to target pathogensSYNergize aims to characterize gut spore-formers to develop synbiotics that inhibit pathogens and combat antimicrobial resistance through enhanced understanding of sporulation and transmission processes. | ERC STG | € 1.499.503 | 2024 | Details |
Proteome-wide Functional Interrogation and Modulation of Gut Microbiome Species
This project aims to identify and manipulate gut microbiome protein functions using high-throughput proteomics to develop targeted therapies for restoring microbial health.
Microbial Synthetic in vivo Cell Therapy Systems
The MiStiC project aims to develop Clostridium leptum as a stable chassis for localized drug production and delivery, targeting colorectal cancer through engineered biosensors and natural product pathways.
Nanostructure formation during food protein digestion and influence on intestinal transport
PRODIGEST aims to enhance sustainable food production by investigating the structural and mechanistic aspects of protein digestion to improve nutrient bioavailability and health outcomes.
SYNergize: Understanding spore-forming gut bacteria biology to target pathogens
SYNergize aims to characterize gut spore-formers to develop synbiotics that inhibit pathogens and combat antimicrobial resistance through enhanced understanding of sporulation and transmission processes.