Microbial Synthetic in vivo Cell Therapy Systems

The MiStiC project aims to develop Clostridium leptum as a stable chassis for localized drug production and delivery, targeting colorectal cancer through engineered biosensors and natural product pathways.

Subsidie
€ 1.499.938
2023

Projectdetails

Introduction

Bacteria are among the most brilliant chemists on Earth. They are capable of producing a wealth of structurally diverse natural products with a wide range of applications in medicine, such as the treatment of infections and cancer. The synthetic production of microbial natural products and their transformation into pharmaceutical drugs is often a challenging, costly, and time-consuming process due to the structural complexity of these molecules and the difficulties associated with drug solubility and formulation.

Emerging Strategies

An emerging new strategy in disease treatment aims to exploit beneficial intestinal microbes for ‘local’ drug production and delivery. Such commensal bacteria are safe, can be administered easily, and can be engineered to detect diseases and release drugs in adequate local concentrations.

Current Limitations

However, the current therapeutic platform or ‘chassis’ strains cannot stably colonize the human gut and have so far only been engineered to produce therapeutic proteins, such as hormones or cytokines. As a result, no commensal chassis strains are available to treat chronic intestinal diseases or to produce clinically important natural product therapeutics.

Project Proposal

In MiStiC, I propose to revolutionize microbial therapy systems by developing the beneficial, stable, and prominent gut colonizer Clostridium leptum as an innovative and superior chassis for long-term health monitoring and chronic disease treatment.

Methodology

I will combine my expertise in:

  1. Molecular microbiology
  2. Enzyme engineering
  3. Natural product biosynthesis

to equip the chassis with a nanobody-based biosensor and biocontainment modules, and optimize it for the expression of natural product biosynthetic pathways.

Proof-of-Concept

As a proof-of-concept, we will implement these tools and chassis strains for the detection and treatment of colorectal cancer. Together, these innovations will have broad translational applications and will pave the way to a new frontier in the field of microbiome engineering and synthetic microbial therapy systems.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.499.938
Totale projectbegroting€ 1.499.938

Tijdlijn

Startdatum1-9-2023
Einddatum31-8-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • VIB VZWpenvoerder

Land(en)

Belgium

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

In situ genetic perturbation of gut bacteria with engineered phage vectors and CRISPR

This project aims to develop synthetic biology tools for precise genetic manipulation of gut bacteria using phage vectors and CRISPR-Cas systems to enhance microbiome-targeted therapies.

€ 1.999.780
ERC ADG

Unraveling the regulatory networks in Streptomyces that switch on antibiotic production on demand

This project aims to unlock the expression of cryptic biosynthetic gene clusters in Streptomyces to enhance drug discovery and agricultural applications through innovative systems biology and ecological insights.

€ 3.343.206
ERC POC

Tuneable Conditional Control of Engineered Bacterial Therapeutics

This project aims to develop a modular synthetic receptor platform for precise control of engineered bacteria in cancer therapy, enhancing safety and efficacy through conditional therapeutic release.

€ 150.000