SYNergize: Understanding spore-forming gut bacteria biology to target pathogens
SYNergize aims to characterize gut spore-formers to develop synbiotics that inhibit pathogens and combat antimicrobial resistance through enhanced understanding of sporulation and transmission processes.
Projectdetails
Introduction
Our intestinal microbiota consists of a dense community of microorganisms, highly adapted to the human gastrointestinal tract. Shared species between individuals indicate the presence of evolved and efficient transmission routes that ensure colonisation of beneficial bacterial species.
Research Focus
Research has traditionally focused on blocking enteric pathogen transmission routes as a means to prevent disease. However, a greater focus on understanding the transmission routes of commensal gut bacteria is required to promote health.
Importance of Spores
Spores are resilient structures that maintain bacterial integrity in a dormant state for extended periods. My previous work has shown that spore formation is a prevalent phenotype in the intestinal microbiota that promotes the transmission of anaerobic gut bacteria by maintaining viability in adverse aerobic environmental conditions until ingested by a new host.
Knowledge Gaps
Despite its importance, sporulation processes in commensal gut bacteria remain poorly understood.
Project Objectives
SYNergize will:
- Characterise the metabolic capabilities of gut spore-formers.
- Analyze spore composition and the environmental cues involved in spore formation and germination.
- Identify combinations of bacteria and nutrients that inhibit enteric pathogens.
Addressing Antimicrobial Resistance
SYNergize also seeks to provide new approaches to target the problem of increasing antimicrobial resistance in European healthcare systems. These probiotic isolate and prebiotic nutrient combinations can be used to create ‘synbiotics’, rationally designed and ingested to decolonise gut pathogens.
Potential Applications
A deeper understanding of sporulation processes could also allow spores to be used to effectively deliver anaerobic probiotic bacteria to the gut. By exploring transmission and colonisation processes of intestinal spore-forming bacteria, SYNergize seeks to understand fundamental adaptations of our intestinal microbiota, which could provide new tools to target antibiotic-resistant pathogens.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.503 |
Totale projectbegroting | € 1.499.503 |
Tijdlijn
Startdatum | 1-4-2024 |
Einddatum | 31-3-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORKpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
In situ genetic perturbation of gut bacteria with engineered phage vectors and CRISPRThis project aims to develop synthetic biology tools for precise genetic manipulation of gut bacteria using phage vectors and CRISPR-Cas systems to enhance microbiome-targeted therapies. | ERC COG | € 1.999.780 | 2022 | Details |
Unraveling the regulatory networks in Streptomyces that switch on antibiotic production on demandThis project aims to unlock the expression of cryptic biosynthetic gene clusters in Streptomyces to enhance drug discovery and agricultural applications through innovative systems biology and ecological insights. | ERC ADG | € 3.343.206 | 2022 | Details |
Harnessing Specialized Metabolism from AnaerobesThe AnoxyGen project aims to explore and harness the unique biosynthetic capabilities of anaerobic bacteria to discover novel metabolites and enhance biotechnological applications for health and ecology. | ERC ADG | € 2.499.859 | 2025 | Details |
INTELLIGENT ENCAPSULATION AND SCREENING PLATFORM FOR PRECISION DELIVERY OF PROBIOTICS TO IMPROVE GUT HEALTHiNSIGHT aims to develop precision probiotics through innovative microencapsulation for targeted delivery, enhancing gut health and addressing related diseases using advanced technology and personalized treatment. | EIC Pathfinder | € 3.194.343 | 2025 | Details |
In situ genetic perturbation of gut bacteria with engineered phage vectors and CRISPR
This project aims to develop synthetic biology tools for precise genetic manipulation of gut bacteria using phage vectors and CRISPR-Cas systems to enhance microbiome-targeted therapies.
Unraveling the regulatory networks in Streptomyces that switch on antibiotic production on demand
This project aims to unlock the expression of cryptic biosynthetic gene clusters in Streptomyces to enhance drug discovery and agricultural applications through innovative systems biology and ecological insights.
Harnessing Specialized Metabolism from Anaerobes
The AnoxyGen project aims to explore and harness the unique biosynthetic capabilities of anaerobic bacteria to discover novel metabolites and enhance biotechnological applications for health and ecology.
INTELLIGENT ENCAPSULATION AND SCREENING PLATFORM FOR PRECISION DELIVERY OF PROBIOTICS TO IMPROVE GUT HEALTH
iNSIGHT aims to develop precision probiotics through innovative microencapsulation for targeted delivery, enhancing gut health and addressing related diseases using advanced technology and personalized treatment.