SubsidieMeesters logoSubsidieMeesters
ProjectenRegelingenAnalyses

Deep Brain Neuromodulation using Temporal Interference Magnetic Stimulation

Develop a non-invasive tool using temporal interference magnetic stimulation for precise modulation of neural activity in the brain, aiming to improve treatment options for brain disorders.

Subsidie
€ 150.000
2022

Projectdetails

Introduction

Five out of ten diseases leading to long-term disability are related to the brain, including stroke, depression, or dementia. Despite tremendous progress in neurotechnology, there is still no effective treatment option available for many brain-related disorders.

Current Approaches and Limitations

A very promising approach to treat brain disorders uses transcranial electric or magnetic stimulation (TES/TMS) to directly influence brain activity related to specific symptoms. However, these methods are limited in their:

  • Spatial resolution
  • Specificity
  • Ability to reach deep brain areas

Project Aim

The aim of the proposed project is to develop a technical and experimental proof-of-concept for a new non-invasive tool that allows for millimeter- and millisecond-precise modulation of neural activity in superficial and deep areas of the human brain.

Methodology

Capitalizing on temporal interference effects, the device will apply high carrier frequency magnetic fields through a pair of coils. By modulating their relative phase, the combined fields will induce a locally amplitude-modulated electric field in the brain.

Mechanism of Action

As neural tissue is insensitive to unmodulated high-frequency fields (>1kHz), but responds to low-frequency amplitude-modulated fields, only brain regions will be stimulated where the combined field is amplitude-modulated.

Goals

Building on the resulting versatility of stimulation frequencies and waveforms, we aim at providing proof for:

  1. Cell-type specificity of such temporal interference magnetic stimulation (TIMS).
  2. The feasibility of targeting neural activity at millisecond-to-millisecond precision.

Expected Impact

The availability of such a device offering high spatial resolution, depth selectivity, steerability, as well as closed-loop compatibility and cell-type specificity would mark a major breakthrough for clinical neuroscience.

Collaboration and Translation

Together with two partners from industry and a partner for technology transfer, we strive for fast translation of expected research results into innovative products.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-11-2022
Einddatum30-4-2024
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • CHARITE - UNIVERSITAETSMEDIZIN BERLINpenvoerder

Land(en)

Germany

Inhoudsopgave

European Research Council

Financiering tot €10 miljoen voor baanbrekend frontier-onderzoek via ERC-grants (Starting, Consolidator, Advanced, Synergy, Proof of Concept).

Bekijk regeling

Vergelijkbare projecten binnen European Research Council

ProjectRegelingBedragJaarActie

MODular and EXpandable multi-locus Transcranial Magnetic Stimulation

Develop an affordable, automated multi-locus TMS system to enhance brain stimulation efficiency and efficacy, improving treatment outcomes for various neurological disorders.

ERC Proof of...€ 150.000
2024
Details

Bidirectional remote deep brain control with magnetic anisotropic nanomaterials

BRAINMASTER aims to develop a scalable, wireless neuromodulation system using magnetic nanodiscs for deep brain therapy and imaging, enhancing cognitive training and treatment for neurological disorders.

ERC Starting...€ 1.500.000
2024
Details

Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental Health

This project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders.

ERC Consolid...€ 1.999.875
2025
Details

Epilepsy Treatment Using Neuromodulation by Non-Invasive Temporal Interference Stimulation

The EMUNITI project aims to develop a non-invasive, personalized brain stimulation device using temporal interference to diagnose and treat epilepsy, enhancing patient care and outcomes.

ERC Consolid...€ 1.996.925
2023
Details

Desynchronizing weak cortical fields during deep brain stimulation

DECODE aims to enhance deep brain stimulation for Parkinson's by investigating weak electric fields' role in desynchronizing neural activity to improve motor control and reduce side effects.

ERC Starting...€ 1.498.914
2024
Details
ERC Proof of...

MODular and EXpandable multi-locus Transcranial Magnetic Stimulation

Develop an affordable, automated multi-locus TMS system to enhance brain stimulation efficiency and efficacy, improving treatment outcomes for various neurological disorders.

ERC Proof of Concept
€ 150.000
2024
Details
ERC Starting...

Bidirectional remote deep brain control with magnetic anisotropic nanomaterials

BRAINMASTER aims to develop a scalable, wireless neuromodulation system using magnetic nanodiscs for deep brain therapy and imaging, enhancing cognitive training and treatment for neurological disorders.

ERC Starting Grant
€ 1.500.000
2024
Details
ERC Consolid...

Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental Health

This project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders.

ERC Consolidator Grant
€ 1.999.875
2025
Details
ERC Consolid...

Epilepsy Treatment Using Neuromodulation by Non-Invasive Temporal Interference Stimulation

The EMUNITI project aims to develop a non-invasive, personalized brain stimulation device using temporal interference to diagnose and treat epilepsy, enhancing patient care and outcomes.

ERC Consolidator Grant
€ 1.996.925
2023
Details
ERC Starting...

Desynchronizing weak cortical fields during deep brain stimulation

DECODE aims to enhance deep brain stimulation for Parkinson's by investigating weak electric fields' role in desynchronizing neural activity to improve motor control and reduce side effects.

ERC Starting Grant
€ 1.498.914
2024
Details

Vergelijkbare projecten uit andere regelingen

ProjectRegelingBedragJaarActie

MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation

META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.

EIC Pathfinder€ 2.987.655
2024
Details

Closed-loop Individualized image-guided Transcranial Ultrasonic Stimulation

The project aims to develop a neuronavigated transcranial ultrasound stimulation (TUS) system for precise, non-invasive modulation of deep brain structures to treat neurological and psychiatric disorders.

EIC Pathfinder€ 3.799.402
2022
Details

Wireless deep BRAIN STimulation thrOugh engineeRed Multifunctinal nanomaterials

BRAINSTORM aims to develop a scalable wireless neuromodulation technology using smart magnetic nanomaterials to selectively control deep brain neurons for therapeutic applications in Fragile X syndrome.

EIC Pathfinder€ 3.083.850
2023
Details

A synaptic mechanogenetic technology to repair brain connectivity

Developing a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy.

EIC Pathfinder€ 3.543.967
2023
Details

Brain Interchange ONE SR—the implantable neuromodulation technology for stroke rehabilitation

CorTec aims to develop innovative implantable technology for stroke rehabilitation, enabling new therapies and devices while targeting market approval and $250M in sales by 2030.

EIC Accelerator€ 2.500.000
2022
Details
EIC Pathfinder

MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation

META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.

EIC Pathfinder
€ 2.987.655
2024
Details
EIC Pathfinder

Closed-loop Individualized image-guided Transcranial Ultrasonic Stimulation

The project aims to develop a neuronavigated transcranial ultrasound stimulation (TUS) system for precise, non-invasive modulation of deep brain structures to treat neurological and psychiatric disorders.

EIC Pathfinder
€ 3.799.402
2022
Details
EIC Pathfinder

Wireless deep BRAIN STimulation thrOugh engineeRed Multifunctinal nanomaterials

BRAINSTORM aims to develop a scalable wireless neuromodulation technology using smart magnetic nanomaterials to selectively control deep brain neurons for therapeutic applications in Fragile X syndrome.

EIC Pathfinder
€ 3.083.850
2023
Details
EIC Pathfinder

A synaptic mechanogenetic technology to repair brain connectivity

Developing a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy.

EIC Pathfinder
€ 3.543.967
2023
Details
EIC Accelerator

Brain Interchange ONE SR—the implantable neuromodulation technology for stroke rehabilitation

CorTec aims to develop innovative implantable technology for stroke rehabilitation, enabling new therapies and devices while targeting market approval and $250M in sales by 2030.

EIC Accelerator
€ 2.500.000
2022
Details

SubsidieMeesters logoSubsidieMeesters

Vind en verken subsidieprojecten in Nederland en Europa.

Links

  • Projecten
  • Regelingen
  • Analyses

Suggesties

Heb je ideeën voor nieuwe features of verbeteringen?

Deel je suggestie
© 2025 SubsidieMeesters. Alle rechten voorbehouden.