Deep Brain Neuromodulation using Temporal Interference Magnetic Stimulation
Develop a non-invasive tool using temporal interference magnetic stimulation for precise modulation of neural activity in the brain, aiming to improve treatment options for brain disorders.
Projectdetails
Introduction
Five out of ten diseases leading to long-term disability are related to the brain, including stroke, depression, or dementia. Despite tremendous progress in neurotechnology, there is still no effective treatment option available for many brain-related disorders.
Current Limitations
A very promising approach to treat brain disorders uses transcranial electric or magnetic stimulation (TES/TMS) to directly influence brain activity related to specific symptoms. However, these methods are limited in their:
- Spatial resolution
- Specificity
- Ability to reach deep brain areas
Project Aim
The aim of the proposed project is to develop a technical and experimental proof-of-concept for a new non-invasive tool that allows for millimeter- and millisecond-precise modulation of neural activity in superficial and deep areas of the human brain.
Methodology
Capitalizing on temporal interference effects, the device will apply high carrier frequency magnetic fields through a pair of coils. By modulating their relative phase, the combined fields will induce a locally amplitude-modulated electric field in the brain.
Mechanism of Action
As neural tissue is insensitive to unmodulated high-frequency fields (>1kHz), but responds to low-frequency amplitude-modulated fields, only brain regions will be stimulated where the combined field is amplitude-modulated.
Goals
Building on the resulting versatility of stimulation frequencies and waveforms, we aim to provide proof for:
- Cell-type specificity of such temporal interference magnetic stimulation (TIMS).
- The feasibility of targeting neural activity at millisecond-to-millisecond precision.
Expected Outcomes
The availability of such a device offering high spatial resolution, depth selectivity, steerability, as well as closed-loop compatibility and cell-type specificity would mark a major breakthrough for clinical neuroscience.
Collaboration
Together with two partners from industry and a partner for technology transfer, we strive for fast translation of expected research results into innovative products.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-11-2022 |
Einddatum | 30-4-2024 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- CHARITE - UNIVERSITAETSMEDIZIN BERLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Closed-loop Individualized image-guided Transcranial Ultrasonic StimulationThe project aims to develop a neuronavigated transcranial ultrasound stimulation (TUS) system for precise, non-invasive modulation of deep brain structures to treat neurological and psychiatric disorders. | EIC Pathfinder | € 3.799.402 | 2022 | Details |
Epilepsy Treatment Using Neuromodulation by Non-Invasive Temporal Interference StimulationThe EMUNITI project aims to develop a non-invasive, personalized brain stimulation device using temporal interference to diagnose and treat epilepsy, enhancing patient care and outcomes. | ERC COG | € 1.996.925 | 2023 | Details |
Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental HealthThis project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders. | ERC COG | € 1.999.875 | 2025 | Details |
Wireless deep BRAIN STimulation thrOugh engineeRed Multifunctinal nanomaterialsBRAINSTORM aims to develop a scalable wireless neuromodulation technology using smart magnetic nanomaterials to selectively control deep brain neurons for therapeutic applications in Fragile X syndrome. | EIC Pathfinder | € 3.083.850 | 2023 | Details |
Closed-loop Individualized image-guided Transcranial Ultrasonic Stimulation
The project aims to develop a neuronavigated transcranial ultrasound stimulation (TUS) system for precise, non-invasive modulation of deep brain structures to treat neurological and psychiatric disorders.
Epilepsy Treatment Using Neuromodulation by Non-Invasive Temporal Interference Stimulation
The EMUNITI project aims to develop a non-invasive, personalized brain stimulation device using temporal interference to diagnose and treat epilepsy, enhancing patient care and outcomes.
Bidirectional Brain/Neural-Computer Interaction for Restoration of Mental Health
This project aims to develop a portable neuromodulation system using quantum sensors and magnetic stimulation to precisely target brain oscillations for treating mental health disorders.
Wireless deep BRAIN STimulation thrOugh engineeRed Multifunctinal nanomaterials
BRAINSTORM aims to develop a scalable wireless neuromodulation technology using smart magnetic nanomaterials to selectively control deep brain neurons for therapeutic applications in Fragile X syndrome.