Closed-loop Individualized image-guided Transcranial Ultrasonic Stimulation
The project aims to develop a neuronavigated transcranial ultrasound stimulation (TUS) system for precise, non-invasive modulation of deep brain structures to treat neurological and psychiatric disorders.
Projectdetails
Introduction
We are joining forces across Europe to advance a new non-invasive technology – transcranial ultrasound stimulation (TUS) – to reversibly modulate brain regions with exquisite millimetre precision, even deep in the brain. As such, we aim to establish an urgently needed novel treatment option for neurological and psychiatric diseases.
Technology Overview
TUS combines the precision and reach of invasive deep brain stimulation, required to directly target clinically relevant structures, with the non-invasive and low-cost nature of transcranial electromagnetic techniques that are inherently limited in focus and depth.
Challenges
The main roadblock to widespread adoption of TUS in neuroscientific and clinical applications is the difficulty of steering the small ultrasound focus onto the intended target and reaching the desired intensity, with no empirical validation of targeting success currently available.
Development Plan
We will develop a neuronavigated TUS-MRI system with advanced magnetic resonance imaging (MRI)-guided application planning and closed-loop application control to enable safe, individualised, and effective high-precision TUS in humans.
Potential Impact
As such, we will unlock the full potential of TUS to non-invasively modulate deep brain structures with unprecedented spatial precision in the millimetre range.
Final Prototype
The final prototype will be a fully functional device that integrates:
- Novel MR-compatible 256-element TUS-transducers (for advanced 3D-steering of the TUS focus)
- A custom-tailored 32-channel MR-receiver coil (for accelerated imaging with maximal sensitivity)
- Closed-loop target validation using MR-acoustic radiation force imaging (MR-ARFI)
This novel device with its unique features will enable for the first time the personalized non-invasive high-precision stimulation of cortical and subcortical targets in the human brain.
Conclusion
It will be a game changer for both neuroscientific research and clinical application in neurological and psychiatric diseases with the potential to benefit millions of patients.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 3.799.402 |
Totale projectbegroting | € 3.799.402 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 30-9-2026 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- MEDIZINISCHE UNIVERSITAET WIENpenvoerder
- UNIVERSITAETSMEDIZIN DER JOHANNES GUTENBERG-UNIVERSITAET MAINZ
- REGION HOVEDSTADEN
- VYSOKE UCENI TECHNICKE V BRNE
- LOCALITE GMBH
- FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG EV
- STICHTING RADBOUD UNIVERSITEIT
- UNIVERSITY COLLEGE LONDON
Land(en)
Vergelijkbare projecten binnen EIC Pathfinder
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A multiplexed biomimetic imaging platform for assessing single cell plasticity (Plastomics) and scoring of tumour malignancyThe PLAST_CELL project aims to develop a microfluidics-based imaging platform to quantify cancer cell plasticity, enhancing diagnosis and treatment of metastasis and therapy resistance. | EIC Pathfinder | € 2.982.792 | 2022 | Details |
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation. | EIC Pathfinder | € 2.996.550 | 2022 | Details |
Smart Electronic Olfaction for Body Odor DiagnosticsSMELLODI aims to digitize and synthesize olfactory information for remote disease diagnostics and assist individuals with olfactory disorders using advanced sensor technology and machine learning. | EIC Pathfinder | € 3.263.781 | 2022 | Details |
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images. | EIC Pathfinder | € 2.744.300 | 2022 | Details |
A multiplexed biomimetic imaging platform for assessing single cell plasticity (Plastomics) and scoring of tumour malignancy
The PLAST_CELL project aims to develop a microfluidics-based imaging platform to quantify cancer cell plasticity, enhancing diagnosis and treatment of metastasis and therapy resistance.
"Creation of innovative ""humidity to electricity"" renewable energy conversion technology towards sustainable energy challenge"
The CATCHER project aims to develop scalable technology for converting atmospheric humidity into renewable electricity, enhancing EU leadership in clean energy innovation.
Smart Electronic Olfaction for Body Odor Diagnostics
SMELLODI aims to digitize and synthesize olfactory information for remote disease diagnostics and assist individuals with olfactory disorders using advanced sensor technology and machine learning.
Quantitative Ultrasound Stochastic Tomography - Revolutionizing breast cancer diagnosis and screening with supercomputing-based radiation-free imaging.
The project aims to revolutionize breast cancer imaging by developing adjoint-based algorithms for uncertainty quantification, enhancing diagnostic confidence through high-resolution, radiation-free images.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Deep Brain Neuromodulation using Temporal Interference Magnetic StimulationDevelop a non-invasive tool using temporal interference magnetic stimulation for precise modulation of neural activity in the brain, aiming to improve treatment options for brain disorders. | ERC POC | € 150.000 | 2022 | Details |
Epilepsy Treatment Using Neuromodulation by Non-Invasive Temporal Interference StimulationThe EMUNITI project aims to develop a non-invasive, personalized brain stimulation device using temporal interference to diagnose and treat epilepsy, enhancing patient care and outcomes. | ERC COG | € 1.996.925 | 2023 | Details |
Minimally invasive and closed-loop ultrasound neuromodulation and recording for the treatment of focal epilepsyThis project aims to develop a minimally invasive, closed-loop ultrasound neuromodulation system for treating refractory epilepsy, optimizing protocols through a comprehensive computational framework. | ERC STG | € 1.499.575 | 2025 | Details |
MODular and EXpandable multi-locus Transcranial Magnetic StimulationDevelop an affordable, automated multi-locus TMS system to enhance brain stimulation efficiency and efficacy, improving treatment outcomes for various neurological disorders. | ERC POC | € 150.000 | 2024 | Details |
Deep Brain Neuromodulation using Temporal Interference Magnetic Stimulation
Develop a non-invasive tool using temporal interference magnetic stimulation for precise modulation of neural activity in the brain, aiming to improve treatment options for brain disorders.
Epilepsy Treatment Using Neuromodulation by Non-Invasive Temporal Interference Stimulation
The EMUNITI project aims to develop a non-invasive, personalized brain stimulation device using temporal interference to diagnose and treat epilepsy, enhancing patient care and outcomes.
Minimally invasive and closed-loop ultrasound neuromodulation and recording for the treatment of focal epilepsy
This project aims to develop a minimally invasive, closed-loop ultrasound neuromodulation system for treating refractory epilepsy, optimizing protocols through a comprehensive computational framework.
MODular and EXpandable multi-locus Transcranial Magnetic Stimulation
Develop an affordable, automated multi-locus TMS system to enhance brain stimulation efficiency and efficacy, improving treatment outcomes for various neurological disorders.