4D bioprinting shape-morphing tissues using phototunable supramolecular hydrogels
morphoPRINT aims to develop a dynamic hydrogel platform for bioprinted tissues that enables programmable shape-morphing, facilitating the creation of functional organs through controlled volumetric growth.
Projectdetails
Introduction
During embryonic development, organs emerge through highly dynamic processes driven by complex shape-transformations that sculpt their final shape, composition, and function. Despite this, existing approaches to organ bioprinting employ static hydrogels that are not capable of supporting morphogenetic shape changes.
Challenges in Current Approaches
Further, we lack an understanding of how key morphogenetic forces such as volumetric tissue growth can be leveraged to re-engineer fundamental tissue shape-morphing behaviours such as:
- Bending
- Buckling
- Bulging
- Twisting
These are major barriers preventing the design of bioprinted tissues that undergo shape-transformations essential for their evolution into a functional final form.
Project Goals
Recognising this, the goal of morphoPRINT is to develop a dynamic hydrogel platform that can spatially turn “on” or “off” volumetric growth in bioprinted tissues to direct 4D shape-morphing. Additionally, we aim to use this platform to re-engineer morphogenetic shape changes that sculpt the tissue into a more mature form.
Proposed Technological Advances
To realise this goal, we propose ground-breaking technological advances to create hydrogels with independent networks of:
- Supramolecular crosslinks that support volumetric growth
- Photoresponsive covalent crosslinks that can be spatially activated to resist volumetric growth
Exploration of Growth Patterns
We will use this platform to explore how spatial patterns of volumetric growth can drive tissue bending, buckling, and bulging. This will lead to a new conceptual understanding of the physical principles that drive tissue shape-morphing.
Application to Heart Tube Design
We will then apply these principles towards the design of bioprinted heart tubes that undergo embryonic-like looping into an early 4-chamber structure.
Conclusion
MorphoPRINT will enable, for the first time, bioprinted organs that undergo programmable shape-morphing. This will set the stage for a new horizon in organ-engineering research focused on recapitulating physical aspects of morphogenesis rather than just the end-stage geometrical structure of the organ.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.906 |
Totale projectbegroting | € 1.499.906 |
Tijdlijn
Startdatum | 1-5-2023 |
Einddatum | 30-4-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- UNIVERSITY OF GALWAYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughputHEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments. | ERC COG | € 2.969.219 | 2022 | Details |
Smart 4D biodegradable metallic shape-shifting implants for dynamic tissue restorationBIOMET4D aims to revolutionize reconstructive surgery with shape-morphing implants for dynamic tissue restoration, enhancing regeneration while reducing costs and invasiveness. | EIC Pathfinder | € 4.039.541 | 2022 | Details |
A novel support material for 3D bioprinting and post-printing tissue growth: Print and GrowThe "Print and Grow" project aims to enhance 3D bioprinting stability and viability of tissue constructs through a novel microgel support, optimizing for diverse tissue types and in vivo applications. | ERC POC | € 150.000 | 2022 | Details |
Holographic Optical Tweezing Bioprinting (HOTB): Towards precise manipulation of cells for artificial multi-scaled vascularized tissues/organ printing.The HOT-BIOPRINTING project aims to revolutionize tissue engineering by developing a holographic optical tweezing bioprinter for high-resolution, automated 3D bioprinting of complex, vascularized tissues. | ERC COG | € 1.965.525 | 2024 | Details |
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughput
HEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments.
Smart 4D biodegradable metallic shape-shifting implants for dynamic tissue restoration
BIOMET4D aims to revolutionize reconstructive surgery with shape-morphing implants for dynamic tissue restoration, enhancing regeneration while reducing costs and invasiveness.
A novel support material for 3D bioprinting and post-printing tissue growth: Print and Grow
The "Print and Grow" project aims to enhance 3D bioprinting stability and viability of tissue constructs through a novel microgel support, optimizing for diverse tissue types and in vivo applications.
Holographic Optical Tweezing Bioprinting (HOTB): Towards precise manipulation of cells for artificial multi-scaled vascularized tissues/organ printing.
The HOT-BIOPRINTING project aims to revolutionize tissue engineering by developing a holographic optical tweezing bioprinter for high-resolution, automated 3D bioprinting of complex, vascularized tissues.