Mapping metabolic responses to understand coexistence and community functioning
This project aims to explore how species interactions influence the metabolism of marine phytoplankton, affecting community productivity and responses to biodiversity loss and global warming.
Projectdetails
Introduction
The metabolism of organisms affects the productivity of populations and communities. However, the relationship between organismal metabolism and species interactions has been scarcely explored. Hence, predicting the rates at which entire communities flux energy and resources remains difficult.
Metabolism and Species Interactions
My work shows that the metabolism of organisms measured in isolation does not reflect their performance in communities because species interactions alter how organisms uptake and expend resources. Understanding how such interactions affect metabolism is essential to estimate productivity and how it will change with biodiversity loss and global warming.
Research Proposal
I propose to use marine phytoplankton as a model laboratory system to determine how metabolic responses to competitors affect coexistence and community functioning. My goal is to connect:
- Metabolic theory, which studies physical constraints on the metabolism of organisms in isolation.
- Community ecology, which centers on species interactions and emergent community properties.
Methodology
Based on my preliminary data, I will:
- Map metabolic responses between species that compete for similar resources.
- Test whether these responses stabilize coexistence.
I will leverage developments in transcriptomics of non-model organisms to identify the metabolic pathways that underpin metabolic responses.
Broader Implications
From this basis, I will extend my analysis on larger temporal and biological scales. Specifically, I will determine:
- How warming modifies metabolic responses and community productivity.
- How metabolism evolves in communities.
Altogether, this project will demonstrate how metabolic adjustments influence the diversity and functioning of communities.
Ecological Importance
I will use a system that is ecologically important because phytoplankton support 50% of global oxygen production. These results will have broad implications for our understanding of biological systems because the metabolic impact of species interactions shapes the physiology and evolution of all organisms.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.488.550 |
Totale projectbegroting | € 1.488.550 |
Tijdlijn
Startdatum | 1-5-2024 |
Einddatum | 30-4-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- FUNDACAO CALOUSTE GULBENKIANpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Structural and Metabolic connection in oceanic plastid symbiosesSymbiOcean aims to dissect the metabolic interactions in plastid symbiosis of marine plankton using novel imaging and genetic tools to enhance understanding of carbon flux in ocean ecosystems. | ERC COG | € 2.203.975 | 2023 | Details |
Mapping vast functional landscapes with single-species resolution: a new approach for precision engineering of microbial consortiaECOPROSPECTOR aims to optimize microbial community composition for enhanced starch hydrolysis using machine learning and evolutionary theories, bridging ecology and biotechnology. | ERC COG | € 1.991.470 | 2023 | Details |
Biodiversity change across time and space in the Anthropocene: Leveraging metacommunity modelling, land-use change, and open data to achieve deeper understandingThis project aims to integrate metacommunity theory with analytical methods to assess and project biodiversity changes influenced by anthropogenic pressures, aiding in biodiversity policy decisions. | ERC ADG | € 2.439.071 | 2024 | Details |
Structural and Metabolic connection in oceanic plastid symbioses
SymbiOcean aims to dissect the metabolic interactions in plastid symbiosis of marine plankton using novel imaging and genetic tools to enhance understanding of carbon flux in ocean ecosystems.
Mapping vast functional landscapes with single-species resolution: a new approach for precision engineering of microbial consortia
ECOPROSPECTOR aims to optimize microbial community composition for enhanced starch hydrolysis using machine learning and evolutionary theories, bridging ecology and biotechnology.
Biodiversity change across time and space in the Anthropocene: Leveraging metacommunity modelling, land-use change, and open data to achieve deeper understanding
This project aims to integrate metacommunity theory with analytical methods to assess and project biodiversity changes influenced by anthropogenic pressures, aiding in biodiversity policy decisions.