Multifunctional nano-bio INterfaces wIth deep braiN reGions
MINING aims to develop multifunctional neural endoscopes that simultaneously detect and trigger electrical and chemical signals in vivo, enhancing our understanding of brain dynamics with high resolution.
Projectdetails
Introduction
Capturing the dynamics of brain activity in its multifaceted components is a key challenge for neural interfaces. Deciphering the complex electrical and chemical signaling exchanged by the different constituents of the brain tissue will result in a better understanding of neural circuits and functions, informing and enabling novel diagnostic and therapeutic approaches.
Research Tools
Next generation of research tools should therefore aim at a multifunctional and fully integrated approach, probing and triggering multiple signals simultaneously with high spatio-temporal resolution and low invasiveness.
MINING Project Overview
MINING aspires at generating a novel class of multifunctional neural endoscopes, able to trigger and detect electrical and molecular signaling with cellular resolution in vivo. The result will be the unprecedented ability to correlate multiple types of signals in the same volume, with spatial and temporal resolution at depth.
Technological Advancements
The limitation of current state of the art will be surmounted by exploiting light-matter interactions in hybrid metal-dielectric metasurfaces and their synergistic integration with organic electrochemical transistors.
Main Objectives
The main objectives of MINING are:
-
Devise hybrid metal-dielectric metasurface (HMS) neural endoscopes, enabling simultaneous:
- High-resolution functional imaging of neural signals
- Label-free optical monitoring of chemical compounds from both wide and localized brain volumes
- Optogenetic and thermoplasmonic modulation of neural functions with cellular resolution
-
Integration of organic electrochemical transistors on HMS endoscopes, generating a novel optoelectrical neural interface with cellular resolution based on active electronics.
-
Development of methods for spatial-resolved multifunctional studies, to demonstrate the power of MINING endoscopes to reveal so far hidden patterns of electrochemical functional dynamics in the living mouse brain.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.992.875 |
Totale projectbegroting | € 2.992.875 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Distributed and federated cross-modality actuation through advanced nanomaterials and neuromorphic learningCROSSBRAIN aims to revolutionize brain condition treatment using implantable microbots for real-time, adaptive neuromodulation and sensing in rodent models of Parkinson's Disease and Epilepsy. | EIC Pathfinder | € 4.034.074 | 2022 | Details |
Bidirectional remote deep brain control with magnetic anisotropic nanomaterialsBRAINMASTER aims to develop a scalable, wireless neuromodulation system using magnetic nanodiscs for deep brain therapy and imaging, enhancing cognitive training and treatment for neurological disorders. | ERC STG | € 1.500.000 | 2024 | Details |
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulationMETA-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders. | EIC Pathfinder | € 2.987.655 | 2024 | Details |
5D Electro-Mechanical Bio-Interface for Neuronal Tissue EngineeringDevelop a novel 3D biomaterial for leadless electrical and mechanical modulation to enhance brain research and neuroengineering applications. | ERC STG | € 1.750.000 | 2024 | Details |
Distributed and federated cross-modality actuation through advanced nanomaterials and neuromorphic learning
CROSSBRAIN aims to revolutionize brain condition treatment using implantable microbots for real-time, adaptive neuromodulation and sensing in rodent models of Parkinson's Disease and Epilepsy.
Bidirectional remote deep brain control with magnetic anisotropic nanomaterials
BRAINMASTER aims to develop a scalable, wireless neuromodulation system using magnetic nanodiscs for deep brain therapy and imaging, enhancing cognitive training and treatment for neurological disorders.
MagnetoElectric and Ultrasonic Technology for Advanced BRAIN modulation
META-BRAIN aims to develop non-invasive, precise control of brain activity using magnetoelectric nanoarchitectures and ultrasonic technologies, enhancing treatment for neurological disorders.
5D Electro-Mechanical Bio-Interface for Neuronal Tissue Engineering
Develop a novel 3D biomaterial for leadless electrical and mechanical modulation to enhance brain research and neuroengineering applications.