Multifaceted molecular MRI toolbox to uncover Zn2+ in physiology and pathology

ZincMRI aims to spatially map dynamic Zn2+ levels and gene expression in vivo using a novel MRI approach, enhancing our understanding of Zn2+ biology in health and disease.

Subsidie
€ 1.999.549
2023

Projectdetails

Introduction

To reveal the multiple aspects (molecular, cellular, and anatomical) of a studied biological process (in health or disease), it is necessary to have the ability to spatially map the multiplexity and dynamicity of intra- and inter-cellular events in the context of a whole organism. We here propose a conceptually novel approach to spatially map the multicomponent information of a studied biological phenomenon, from the deep tissue of a studied subject using a single imaging setup.

Background

In realizing the importance and diverse roles of labile Zn2+ in specific tissues, we aim to develop ZincMRI. ZincMRI is a molecular imaging toolbox designed to provide orthogonal MRI readouts, with which we aim to monitor the multiple facets of Zn2+ biology through:

  1. Quantitatively mapping dynamic changes in intra- and extra-cellular levels of Zn2+.
  2. Spatially monitoring Zn2+-induced gene expression.
  3. Providing complementary high-resolution anatomical views of the studied subject.

Development of ZincMRI

To establish ZincMRI, we will design, develop, and implement:

  1. Fluorinated synthetic compounds as MRI responsive agents for quantitatively mapping changes in labile Zn2+ levels using 19F-MRI (Aim 1).
  2. Conditional MRI reporter genes for mapping Zn2+-induced transcription with 1H-CEST MRI (Aim 2).

Application of ZincMRI

Capitalizing on the orthogonality of the signals obtained with 19F-MRI and 1H-CEST MRI, ZincMRI will be applied to map, in vivo, from the hippocampus region of the brain, both the dynamic changes in Zn2+ levels and the transcription of Zn2+ regulatory elements in response to physiological and pathological stimuli (Aim 3).

Vision for ZincMRI

We envision that ZincMRI, which unconventionally aims to study two aspects of Zn2+ biology using a single imaging modality, and is also applicable for the study of deep tissues, may affect not only the way we study this ion, but could also be further extended to study other metal ions with biological relevance by capitalizing on the scientific paradigm proposed here.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.999.549
Totale projectbegroting€ 1.999.549

Tijdlijn

Startdatum1-4-2023
Einddatum31-3-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • WEIZMANN INSTITUTE OF SCIENCEpenvoerder

Land(en)

Israel

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Engineering vasoactive probes for brain-wide imaging of molecular signaling

This project aims to develop AVATars that convert neurotransmitter signaling into hemodynamic signals for enhanced fMRI, enabling visualization of molecular dynamics in brain function.

€ 1.492.968
ERC POC

Nano-Biological Contrast Agent Platform for MRI Imaging

NANO-IMAGING aims to develop customizable, safe, and tissue-specific MRI contrast agents using metal-protein hybrid nanostructures to enhance diagnostic imaging efficiency.

€ 150.000
ERC POC

MAGNIFICO-Pre-commercialization of multifunctional targeted MRI-contrast enhancing agents for brain research

This project aims to enhance MRI's capabilities for brain disease research by developing targeted fluorescent contrast agents and engineering cells for improved in vivo imaging.

€ 150.000
ERC POC

Radiation-detected NMR: new dimension for Magnetic Resonance spectroscopy and imaging

This project aims to develop a modular insert for conventional NMR and MRI spectrometers to enhance sensitivity through in-situ polarisation of longer-lived nuclei using radiation-detected NMR.

€ 150.000