Engineering vasoactive probes for brain-wide imaging of molecular signaling

This project aims to develop AVATars that convert neurotransmitter signaling into hemodynamic signals for enhanced fMRI, enabling visualization of molecular dynamics in brain function.

Subsidie
€ 1.492.968
2023

Projectdetails

Introduction

Brain function depends on spatiotemporally defined brain-wide signaling via molecules such as neurotransmitters. No current technology can measure signaling molecules throughout the brain with sufficient spatial and temporal resolution in living mammals. This poses a major roadblock for understanding how molecular neuronal communication coordinates whole-brain function.

Current Technologies

Magnetic resonance imaging (MRI) currently provides the highest brain-wide resolution. Dynamic imaging of blood flow and oxygenation in the finely arborized vasculature, so-called functional MRI (fMRI), is the only method that can visualize whole-brain function in mammals and humans.

However, MRI is inherently insensitive, which precludes it from accessing molecular signaling that occurs at (sub)micromolar concentrations. Additionally, fMRI cannot resolve neurotransmitter signaling underlying measured hemodynamic signals.

Previous Work

I previously designed protein-based vasoactive sensors, named AVATar, that directly cause hemodynamic signals in fMRI in response to target molecules at low nanomolar doses, without using radioactive or metallic components. They can be genetically encoded and also pave the way for noninvasive brain delivery through the vasculature, which is critical for translational applications in primates and humans.

Project Objectives

Here, I will combine my expertise in synthetic biology and in vivo molecular imaging to develop my proof-of-concept work into a robust preclinical neuroimaging method along three objectives:

  1. Engineering AVATars that convert neurotransmitter signaling into hemodynamic signals.
  2. Brain delivery via non-invasive routes.
  3. Application for fMRI of brain-wide neurotransmitter signaling in rodents.

Expected Outcomes

My project will provide neurotransmitter-sensing AVATars to turn fMRI into molecular fMRI and bridge the long-standing gap between molecular nuclear imaging and functional hemodynamic imaging. AVATars will visualize how brain-wide molecular signaling dynamics shape healthy and pathological brain function.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.492.968
Totale projectbegroting€ 1.492.968

Tijdlijn

Startdatum1-5-2023
Einddatum30-4-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder
  • TECHNISCHE UNIVERSITAET MUENCHEN

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

EIC Pathfinder

Remote whole-brain functional microscopy of the vascular system: a paradigm shift for the monitoring and treatment of small vessel diseases

The project aims to revolutionize neuroimaging by developing functional Ultrasound Localization Microscopy (fULM) for high-resolution monitoring of brain vasculature and function, enhancing disease diagnosis and treatment evaluation.

€ 3.946.172
EIC Pathfinder

A synaptic mechanogenetic technology to repair brain connectivity

Developing a mechanogenetic technology using magnetic nanoparticles to non-invasively regulate neural circuits for treating treatment-resistant brain disorders like stroke and epilepsy.

€ 3.543.967
ERC SyG

A sonogenetic brain-machine interface for neurosciences and visual restoration

Developing a novel sonogenetic brain-machine interface for remote, precise control of neuronal networks in large primate brains to advance treatments for neurological disorders.

€ 7.817.939