Radiation-detected NMR: new dimension for Magnetic Resonance spectroscopy and imaging

This project aims to develop a modular insert for conventional NMR and MRI spectrometers to enhance sensitivity through in-situ polarisation of longer-lived nuclei using radiation-detected NMR.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

Nuclear magnetic resonance (NMR) is a powerful spectroscopic technique, used in various fields, including chemistry, biology, and medicine. However, conventional NMR has one big limitation, namely very small sensitivity, due to a low level of polarization of nuclear spins and inefficient signal detection by an induction signal in pick-up coils.

Background

My ERC Starting grant has explored the use of radiation-detected NMR (RD-NMR), in which very short-lived nuclei were used as novel NMR probes, bringing up to a billion-fold increase in NMR sensitivity. Such nuclei are produced at a radioactive-ion beam facility and are polarized on the fly, before being introduced into the sample.

Project Goals

In this Proof of Concept project, I want to use the advantages of RD-NMR and explore the prospect of turning it into a more easily accessible analytic tool. I aim to build a prototype of a modular insert for conventional NMR and MRI spectrometers that will allow in-situ polarization of longer-lived nuclei that can be acquired commercially.

Prototype Design

The insert will include:

  • A sample
  • RF coil for spin excitation
  • Beta-particle detectors
  • Connections to introduce the hyperpolarizing agent and the radiolabeled molecule that will be polarized in situ

The insert will be complemented by hardware and software needed for data acquisition.

Collaboration and Exploration

During the project, we will also explore the most suitable exploitation path. We will:

  1. Refine the end users and end market (including a workshop at CERN)
  2. Investigate the patentability of the results

I will collaborate with researchers from the University of Mainz, knowledge transfer specialists, and companies active in NMR and MRI.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-3-2023
Einddatum31-8-2024
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIREpenvoerder

Land(en)

Switzerland

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000

Vergelijkbare projecten uit andere regelingen

ERC STG

Chirality-sensitive Nuclear Magnetoelectric Resonance

This project aims to develop a novel NMR spectroscopy method to directly identify chiral molecules using enhanced chirality-sensitive signals, enabling applications in chemistry, biochemistry, and pharmaceuticals.

€ 1.500.000
ERC COG

PREcision Studies with Optically pumped Beams of Exotic Nuclei

This project aims to accurately determine the distribution of magnetization and neutrons in unstable nuclei using advanced Nuclear Magnetic Resonance techniques at CERN, enhancing nuclear structure studies and related physics.

€ 2.184.375
EIC Pathfinder

Single Molecule Nuclear Magnetic Resonance Microscopy for Complex Spin Systems

This project aims to enhance NMR sensitivity to single molecules using scanning probe microscopy, enabling groundbreaking insights in nanotechnology and impacting NMR and SPM markets.

€ 2.994.409
EIC Transition

Hyperpolarized NMR made simple

MAGSENSE aims to enhance NMR sensitivity by using standard hydrogen molecules as polarization batteries, enabling ultrasensitive analysis without modifying existing equipment, thus revolutionizing various fields.

€ 2.451.913