Mixotrophy: an uncharted carbon flux in the plant world
This project aims to investigate the prevalence and impact of AM mixotrophy in plants, revealing how they obtain carbon from fungi, to enhance our understanding of carbon cycling in ecosystems.
Projectdetails
Introduction
Plants need light to grow. They use energy from sunlight to produce organic carbon. However, new findings – including my own work – now hint that up to 35% of all plant species can also obtain carbon from root-associated fungi when light availability is insufficient for growth. This calls into question much of what we thought we knew about how plants survive in the understory.
Project Goal
The goal of this project is to determine the frequency and magnitude of this newly discovered form of ‘mixotrophy’ in our terrestrial ecosystems. I will achieve this exciting goal by working at the intersection of physiology, ecology, evolutionary, and molecular biology.
Background
The vast majority of land plants transfer part of the organic carbon they produce by photosynthesis to root-associated ‘arbuscular mycorrhizal’ (AM) fungi, which help plants to take up nutrients and water from the soil. My previous findings demonstrate that this carbon can be subsequently taken up by rare non-green plants that tap into the same fungal network. This paved the way for the discovery of AM mixotrophy, in which common green plants take up carbon from AM fungi.
Research Gaps
However, the plant and fungal diversity involved in AM mixotrophy are unknown. Likewise, the environmental drivers that influence carbon uptake have never been measured, nor do we know about its evolution and geographic distribution. This is problematic because we are unable to quantify or understand the role of AM mixotrophy in our natural world.
Methodology
With field studies, laboratory experiments, and genetic screening of natural history collections, I will:
- Identify AM mixotrophic plants and their habitats.
- Reveal environmental drivers that regulate carbon uptake.
- Expose fungal networks that sustain AM mixotrophs.
- Measure the magnitude of AM mixotrophy across evolutionary and geographic scales.
Expected Outcomes
This will lead to a fundamental shift in our understanding of carbon uptake by plants, with profound effects for carbon cycling models and conservation.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.986.701 |
Totale projectbegroting | € 1.986.701 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- STICHTING NATURALIS BIODIVERSITY CENTERpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Mycorrhizal Types and Soil Carbon Storage: A mechanistic theory of fungal mediated soil organic matter cycling in temperate forestsMYCO-SoilC aims to understand the impact of mycorrhizal fungi on soil carbon storage through innovative technologies, enhancing predictions of soil-climate feedbacks. | ERC STG | € 1.499.930 | 2022 | Details |
Structure and functions of terrestrial phycospheresThis project aims to investigate the structure and functions of terrestrial phycospheres using Chlamydomonas reinhardtii to uncover ecological principles linking algal and plant root microbiota. | ERC STG | € 1.499.544 | 2023 | Details |
Nuclear cooperation and conflict across symbiotic fungal networksThis project investigates the genetic diversity and reproductive mechanisms of arbuscular mycorrhizal fungi to enhance nutrient exchange in plant networks and challenge existing evolutionary theories. | ERC STG | € 1.500.000 | 2023 | Details |
Tracing single-cell scale chemical signaling between interacting soil fungiThis project aims to develop a novel SERS microspectroscopy method combined with microfluidics to study fungal secondary metabolites and their ecological roles in soil ecosystems at a single-cell level. | ERC STG | € 1.493.364 | 2024 | Details |
Mycorrhizal Types and Soil Carbon Storage: A mechanistic theory of fungal mediated soil organic matter cycling in temperate forests
MYCO-SoilC aims to understand the impact of mycorrhizal fungi on soil carbon storage through innovative technologies, enhancing predictions of soil-climate feedbacks.
Structure and functions of terrestrial phycospheres
This project aims to investigate the structure and functions of terrestrial phycospheres using Chlamydomonas reinhardtii to uncover ecological principles linking algal and plant root microbiota.
Nuclear cooperation and conflict across symbiotic fungal networks
This project investigates the genetic diversity and reproductive mechanisms of arbuscular mycorrhizal fungi to enhance nutrient exchange in plant networks and challenge existing evolutionary theories.
Tracing single-cell scale chemical signaling between interacting soil fungi
This project aims to develop a novel SERS microspectroscopy method combined with microfluidics to study fungal secondary metabolites and their ecological roles in soil ecosystems at a single-cell level.