Tracing single-cell scale chemical signaling between interacting soil fungi
This project aims to develop a novel SERS microspectroscopy method combined with microfluidics to study fungal secondary metabolites and their ecological roles in soil ecosystems at a single-cell level.
Projectdetails
Introduction
Multiple species of fungi co-exist in soils and play an important role in biogeochemical cycles. To survive in a resource-limited environment, they have developed the means for interspecific communication and warfare via an arsenal of secreted secondary metabolites.
Research Gap
The specific ecological role of those metabolites and the extent to which they affect biogeochemical cycling during fungal interactions remains unknown. Because they are secreted and act at a single-cell scale, tracing them ‘then and there’ can aid in identifying potential triggers for their production and clarifying their function.
Current Limitations
Currently used methods have either insufficient resolution or are destructive, and are not suitable for such analyses.
Proposed Methodology
Here, I will use my expertise in spectroscopy techniques to:
-
Establish experimental protocols for the single-cell scale fungal secondary metabolite identification and characterization using surface-enhanced Raman scattering (SERS) microspectroscopy. This method employs the optical properties of gold nanoparticles for molecule-specific sensing and has been shown in biomedical research to have extraordinary potential for studying microbial metabolic processes.
-
Combine it with microfluidics-based soil chips that provide visual access to and mimic real ecosystems via control over the biotic and abiotic environment of soil microbes.
Objectives
Ultimately, my aim is to offer the community of soil fungal ecologists a game-changing new tool to study ecosystem functions of secondary metabolites in more realistic settings.
Experimental Applications
I will then use the approach to:
-
Determine how interspecific fungal interactions under varying nutrient conditions affect the composition of their secondary metabolome and its functions live and at a single-cell scale.
-
Conduct additional transcriptome analysis to reveal fungal genes involved in the up- or downregulation of metabolite biosynthesis, as well as extracellular enzyme production for organic matter degradation and nutrient acquisition.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.493.364 |
Totale projectbegroting | € 1.493.364 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- LUNDS UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Mixotrophy: an uncharted carbon flux in the plant worldThis project aims to investigate the prevalence and impact of AM mixotrophy in plants, revealing how they obtain carbon from fungi, to enhance our understanding of carbon cycling in ecosystems. | ERC COG | € 1.986.701 | 2022 | Details |
The Identification of the Reactive Pore Space in SoilsEXPOSOIL aims to enhance soil quality assessment by developing innovative methods to analyze reactive pore spaces and their impact on nutrient and contaminant bioavailability in undisturbed soils. | ERC ADG | € 2.498.535 | 2022 | Details |
Mapping vast functional landscapes with single-species resolution: a new approach for precision engineering of microbial consortiaECOPROSPECTOR aims to optimize microbial community composition for enhanced starch hydrolysis using machine learning and evolutionary theories, bridging ecology and biotechnology. | ERC COG | € 1.991.470 | 2023 | Details |
Mixotrophy: an uncharted carbon flux in the plant world
This project aims to investigate the prevalence and impact of AM mixotrophy in plants, revealing how they obtain carbon from fungi, to enhance our understanding of carbon cycling in ecosystems.
The Identification of the Reactive Pore Space in Soils
EXPOSOIL aims to enhance soil quality assessment by developing innovative methods to analyze reactive pore spaces and their impact on nutrient and contaminant bioavailability in undisturbed soils.
Mapping vast functional landscapes with single-species resolution: a new approach for precision engineering of microbial consortia
ECOPROSPECTOR aims to optimize microbial community composition for enhanced starch hydrolysis using machine learning and evolutionary theories, bridging ecology and biotechnology.