Electrical Modulation of Elastic Moduli
This project aims to develop stimuli-responsive textiles using conjugated polymers to enable tactile communication through adjustable pliability and texture for applications in robotics and virtual reality.
Projectdetails
Introduction
How could a textile change its feel upon the push of a button? While we are accustomed to visual displays and loudspeakers, interactive tactile perception largely eludes our experience. Textiles that change their pliability and texture would allow for communication using our sense of touch.
Potential Applications
Potential applications abound, including:
- Human-machine interfaces for robotics
- New forms of virtual reality
Project Overview
To facilitate such a tuneable mechanical response, materials are needed whose stiffness can be altered. This project will use conjugated polymers to realize stimuli-responsive materials.
Material Development
The developed materials will be spun into fibres and yarns, which will be integrated into prototype textile devices that can undergo a reversible change in pliability and texture.
Research Implications
The explored materials science concepts will open up a new line of research in the blossoming field of organic electronics. Meanwhile, the application-oriented part of the project opens new horizons for the interdisciplinary field of wearable electronics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- CHALMERS TEKNISKA HOGSKOLA ABpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Reversible Heterolytic Mechanophores for Dynamic Bulk MaterialsReHuse aims to develop reversible mechanophores that enable dynamic mechanoresponsiveness in polymers, paving the way for recyclable materials and innovative atmospheric water harvesters. | ERC STG | € 1.498.401 | 2023 | Details |
Textile-Based Wearable Soft Robotics with Integrated Sensing, Actuating and Self Powering PropertiesTEXWEAROTS aims to develop a lightweight, knitted soft robotic glove with integrated actuation and sensing for enhanced mobility and reliability in rehabilitation and daily assistance. | ERC STG | € 1.479.262 | 2022 | Details |
Development of smart skin for high resolution multi-sensingSmart Skin aims to develop a prototype artificial skin that simultaneously detects temperature, force, and humidity with high spatial resolution, enhancing robotics and prosthetics responsiveness. | ERC POC | € 150.000 | 2023 | Details |
Life-Inspired Soft MatterThis project aims to develop life-inspired materials with adaptive properties through dynamic control mechanisms, enabling applications in human-device interfaces and soft robotics. | ERC ADG | € 2.500.000 | 2024 | Details |
Reversible Heterolytic Mechanophores for Dynamic Bulk Materials
ReHuse aims to develop reversible mechanophores that enable dynamic mechanoresponsiveness in polymers, paving the way for recyclable materials and innovative atmospheric water harvesters.
Textile-Based Wearable Soft Robotics with Integrated Sensing, Actuating and Self Powering Properties
TEXWEAROTS aims to develop a lightweight, knitted soft robotic glove with integrated actuation and sensing for enhanced mobility and reliability in rehabilitation and daily assistance.
Development of smart skin for high resolution multi-sensing
Smart Skin aims to develop a prototype artificial skin that simultaneously detects temperature, force, and humidity with high spatial resolution, enhancing robotics and prosthetics responsiveness.
Life-Inspired Soft Matter
This project aims to develop life-inspired materials with adaptive properties through dynamic control mechanisms, enabling applications in human-device interfaces and soft robotics.