Reversible Heterolytic Mechanophores for Dynamic Bulk Materials
ReHuse aims to develop reversible mechanophores that enable dynamic mechanoresponsiveness in polymers, paving the way for recyclable materials and innovative atmospheric water harvesters.
Projectdetails
Introduction
Stimuli-responsive polymers adapt their properties in response to external cues. Engineering such “smart” behavior in artificial systems by molecular design is an exciting fundamental challenge that can lead to technological breakthroughs. Most stimuli-responsive polymers rely on heat and light to trigger changes in materials properties in a predictable fashion.
Limitations of Current Approaches
However, limitations intrinsic to these stimuli highlight the necessity of alternative strategies. Naturally evolved systems widely exploit mechanical stimulation to regulate their functions, but recreating such concepts in artificial materials has proven extremely challenging thus far.
Proposed Approach
ReHuse proposes a radically new approach that focuses on the application of mechanical force to induce changes in bulk materials properties isothermally and reversibly. The research project aims at pushing the frontiers of covalent mechanochemistry through the development of reversible heterolytic mechanophores – molecular platforms that dynamically generate and recombine two oppositely charged (macro)molecular fragments upon mechanical stimulation.
Dynamic Chemistries
These new motifs will enable dynamic chemistries involving organic ionic species in solid-state systems in two different types of advanced bulk materials. Combining reversible mechanochemistry and dynamic covalent chemistry will lead to dynamic covalent polymers displaying selective mechanoresponsiveness.
Applications and Impact
This concept will be leveraged to create recyclable materials. The reversible generation of charges from the heterolytic scission will enable the modulation of hydrophilicity/hydrophobicity dynamically. Such principles will be explored to set the groundwork for mechano-responsive atmospheric water harvesters.
Conclusion
This interdisciplinary research project will advance our understanding of mechanochemistry and, more importantly, will usher in new avenues for its productive and repeatable use in adaptive materials.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.498.401 |
Totale projectbegroting | € 1.498.401 |
Tijdlijn
Startdatum | 1-8-2023 |
Einddatum | 31-7-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Multimodal Sensory-Motorized Material SystemsMULTIMODAL aims to create advanced sensory-motorized materials that autonomously respond to environmental stimuli, enabling innovative soft robots with adaptive locomotion and interactive capabilities. | ERC COG | € 1.998.760 | 2023 | Details |
Supramolecular & Covalent Bonds for Engineering Spatiotemporal Complexity in Hydrogel BiomaterialsThe project aims to develop tough, spatiotemporally responsive hydrogels by combining dynamic supramolecular assemblies with covalent bonds for innovative biomaterial applications. | ERC COG | € 2.000.000 | 2024 | Details |
In-silico Models for the Design of Mechanochromic Functionalized PolymersThe MaMa project aims to design and develop mechanochromic materials with smart features through integrated computational approaches for applications in anti-counterfeiting, smart coatings, and structural health monitoring. | ERC ADG | € 2.493.750 | 2023 | Details |
DNA-encoded REconfigurable and Active MatterThe project aims to develop DNA-encoded dynamic principles to create adaptive synthetic materials with life-like characteristics and multifunctional capabilities through innovative self-assembly and genetic programming. | ERC ADG | € 2.496.750 | 2023 | Details |
Multimodal Sensory-Motorized Material Systems
MULTIMODAL aims to create advanced sensory-motorized materials that autonomously respond to environmental stimuli, enabling innovative soft robots with adaptive locomotion and interactive capabilities.
Supramolecular & Covalent Bonds for Engineering Spatiotemporal Complexity in Hydrogel Biomaterials
The project aims to develop tough, spatiotemporally responsive hydrogels by combining dynamic supramolecular assemblies with covalent bonds for innovative biomaterial applications.
In-silico Models for the Design of Mechanochromic Functionalized Polymers
The MaMa project aims to design and develop mechanochromic materials with smart features through integrated computational approaches for applications in anti-counterfeiting, smart coatings, and structural health monitoring.
DNA-encoded REconfigurable and Active Matter
The project aims to develop DNA-encoded dynamic principles to create adaptive synthetic materials with life-like characteristics and multifunctional capabilities through innovative self-assembly and genetic programming.