A revolutionary archaeological Pb observatory for astrophysical neutrino sources

RES-NOVA aims to revolutionize neutrino detection from supernovae using cryogenic archaeological Pb detectors, enabling precise measurements of neutrino signals and advancing multi-messenger astronomy.

Subsidie
€ 2.661.005
2023

Projectdetails

Introduction

One of the most energetic events in the Universe is the core-collapse Supernova (SN) where almost all the star's binding energy is released as neutrinos. These particles are direct probes of the processes occurring in the stellar core and provide unique insights into the gravitational collapse and the neutrino properties. Currently, astroparticle physics is in need of SN observations and of a detection technique highly sensitive to all neutrino flavors.

Project Overview

RES-NOVA will revolutionize how we detect neutrinos from astrophysical sources by deploying the first array of cryogenic detectors made from archaeological Pb.

Detection Mechanism

Neutrino detection in RES-NOVA is facilitated by the newly discovered Coherent Elastic neutrino-Nucleus Scattering (CEvNS). It enables the first measurement of the full SN neutrino signal, eradicating the uncertainties related to flavor oscillations.

Advantages of CEvNS

To fully exploit the advantages of CEvNS, RES-NOVA ennobles Pb from being a passive shielding to the most sensitive detector component. Pb has the highest cross-section, 10^4 times higher than all used detection channels, enabling the deployment of a cm-scale neutrino observatory.

Innovative Approach

The unconventional approach of RES-NOVA is to use ultra-pure archaeological Pb and run it as a cryogenic detector with:

  • Low-energy threshold (<1 keV)
  • Unprecedented background (<0.001 c/ton/keV/s)

These features also open new opportunities in multi-messenger astronomy, Dark Matter, and neutrino property studies. The success of my pioneer work in operating archaeological Pb-based cryogenic detectors is pivotal for RES-NOVA realization.

Survey Capabilities

RES-NOVA will survey 90% of the potential galactic SNe, with only a total detector volume of (30 cm)^3. Future detector upgrades will enhance our SN sensitivity into the uncharted territory >1 Mpc and increase the SN observation rate.

Future Prospects

RES-NOVA has the potential to lay the foundations for a future generation of European neutrino telescopes, as all its SN neutrino detectors are currently going offline.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.661.005
Totale projectbegroting€ 2.661.005

Tijdlijn

Startdatum1-12-2023
Einddatum30-11-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCApenvoerder
  • ISTITUTO NAZIONALE DI FISICA NUCLEARE
  • ISTITUTO NAZIONALE DI FISICA NUCLEARE

Land(en)

Italy

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Gaseous detectors for neutrino physics at the European Spallation Source

This project aims to develop a high-pressure noble gas TPC detector for coherent elastic neutrino-nucleus scattering at the ESS, enabling sensitive exploration of new physics beyond the Standard Model.

€ 1.496.205
ERC ADG

Why a new neutrino telescope? Because we can.

NEUTRINOSHOT aims to develop a multi-cubic-kilometre neutrino telescope in the Pacific Ocean to enhance detection of ultra-high energy cosmic rays and advance our understanding of the universe.

€ 3.169.384
ERC ADG

Beyond the Standard Model: Coherent Neutrino Scattering at the European Spallation Source

The project aims to develop advanced cryogenic CsI scintillator detectors for Coherent Elastic Neutrino-Nucleus Scattering at the ESS, enhancing sensitivity to new physics beyond the Standard Model.

€ 2.795.294
ERC STG

Discovering neutrinos of extreme energies with the Radio Neutrino Observatory Greenland

The RNO-G project aims to enhance ultra-high energy neutrino detection using advanced simulations and calibration techniques to uncover cosmic ray sources and new particle physics insights.

€ 1.500.000