Gaseous detectors for neutrino physics at the European Spallation Source
This project aims to develop a high-pressure noble gas TPC detector for coherent elastic neutrino-nucleus scattering at the ESS, enabling sensitive exploration of new physics beyond the Standard Model.
Projectdetails
Introduction
The recent detection of the coherent elastic neutrino-nucleus scattering (CEnNS) opens the possibility of using neutrinos to explore physics beyond the Standard Model deploying small detectors.
Challenges in Detection
However, the CEnNS process generates signals at the few keV level, requiring very sensitive detection technologies.
Opportunities at the European Spallation Source
The European Spallation Source (ESS) has been identified as an optimal source of low energy neutrinos, offering an opportunity to explore at depth the physics of CEnNS, with large discovery potential.
Project Proposal
In this project, I propose to apply the high-pressure noble gas TPC technology to the detection of the CEnNS process at the ESS.
Requirements
This will require:
- Detection techniques sensitive to very low-energy depositions.
- Improving the current knowledge of the quenching factor for nuclear recoils in xenon, argon, and neon gas at keV energies.
Detector Development
This project proposes the development of a novel detector able to hold 20 kg of xenon gas at high pressure. The device will operate at the ESS, providing more than 7,000 CEnNS events per year, potentially overtaking the sensitivities of much larger detectors in current spallation sources.
Exploration of New Physics
Operation with xenon will explore most of the possible new physics associated with the CEnNS process. Furthermore, the high-pressure technology offers the possibility to operate the same detector with different gases at minimal extra costs, thus providing a unique tool to further explore any signatures of new physics at the ESS.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.496.205 |
Totale projectbegroting | € 1.496.205 |
Tijdlijn
Startdatum | 1-2-2022 |
Einddatum | 31-1-2028 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- FUNDACION DONOSTIA INTERNATIONAL PHYSICS CENTERpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Why a new neutrino telescope? Because we can.NEUTRINOSHOT aims to develop a multi-cubic-kilometre neutrino telescope in the Pacific Ocean to enhance detection of ultra-high energy cosmic rays and advance our understanding of the universe. | ERC ADG | € 3.169.384 | 2022 | Details |
Beyond the Standard Model: Coherent Neutrino Scattering at the European Spallation SourceThe project aims to develop advanced cryogenic CsI scintillator detectors for Coherent Elastic Neutrino-Nucleus Scattering at the ESS, enhancing sensitivity to new physics beyond the Standard Model. | ERC ADG | € 2.795.294 | 2022 | Details |
A revolutionary archaeological Pb observatory for astrophysical neutrino sourcesRES-NOVA aims to revolutionize neutrino detection from supernovae using cryogenic archaeological Pb detectors, enabling precise measurements of neutrino signals and advancing multi-messenger astronomy. | ERC COG | € 2.661.005 | 2023 | Details |
Dark matter and neutrino experiment with monolithic arrays of cryogenic detectorsDANAE aims to enhance the detection of low energy neutrinos and Dark Matter by using advanced superconducting detectors to measure nuclear recoils, potentially leading to groundbreaking discoveries. | ERC COG | € 2.587.500 | 2023 | Details |
Why a new neutrino telescope? Because we can.
NEUTRINOSHOT aims to develop a multi-cubic-kilometre neutrino telescope in the Pacific Ocean to enhance detection of ultra-high energy cosmic rays and advance our understanding of the universe.
Beyond the Standard Model: Coherent Neutrino Scattering at the European Spallation Source
The project aims to develop advanced cryogenic CsI scintillator detectors for Coherent Elastic Neutrino-Nucleus Scattering at the ESS, enhancing sensitivity to new physics beyond the Standard Model.
A revolutionary archaeological Pb observatory for astrophysical neutrino sources
RES-NOVA aims to revolutionize neutrino detection from supernovae using cryogenic archaeological Pb detectors, enabling precise measurements of neutrino signals and advancing multi-messenger astronomy.
Dark matter and neutrino experiment with monolithic arrays of cryogenic detectors
DANAE aims to enhance the detection of low energy neutrinos and Dark Matter by using advanced superconducting detectors to measure nuclear recoils, potentially leading to groundbreaking discoveries.