Discovering neutrinos of extreme energies with the Radio Neutrino Observatory Greenland
The RNO-G project aims to enhance ultra-high energy neutrino detection using advanced simulations and calibration techniques to uncover cosmic ray sources and new particle physics insights.
Projectdetails
Introduction
The discovery of neutrinos above energies of 1e16 eV promises to uncover the unknown sources of ultra-high energy cosmic rays, new insights into the astrophysics of these sources, and particle propagation through the Universe. Additionally, it may lead to new particle physics at energies far higher than those accessible to man-made accelerators.
Project Overview
The Radio Neutrino Observatory Greenland (RNO-G) is currently under construction and is scheduled to reach 35 stations in 2026. The in-ice radio array RNO-G is the first large-scale implementation of the radio Askaryan technique and will provide an order of magnitude better discovery sensitivity than existing experiments.
Leadership and Collaboration
Its construction and operation is led by me and two colleagues from the US and Europe. This proposal maximizes RNO-G's potential to discover the long-awaited ultra-high energy neutrinos.
Research Methodology
My research group will achieve this by enabling high-efficiency and high-purity neutrino searches in data through:
- Novel simulations with improved accuracy
- High-precision instrument calibration
- Unique exploitation of cosmic ray signals as a training tool
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-12-2023 |
Einddatum | 30-11-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- DEUTSCHES ELEKTRONEN-SYNCHROTRON DESYpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Why a new neutrino telescope? Because we can.NEUTRINOSHOT aims to develop a multi-cubic-kilometre neutrino telescope in the Pacific Ocean to enhance detection of ultra-high energy cosmic rays and advance our understanding of the universe. | ERC ADG | € 3.169.384 | 2022 | Details |
A revolutionary archaeological Pb observatory for astrophysical neutrino sourcesRES-NOVA aims to revolutionize neutrino detection from supernovae using cryogenic archaeological Pb detectors, enabling precise measurements of neutrino signals and advancing multi-messenger astronomy. | ERC COG | € 2.661.005 | 2023 | Details |
Dark matter and neutrino experiment with monolithic arrays of cryogenic detectorsDANAE aims to enhance the detection of low energy neutrinos and Dark Matter by using advanced superconducting detectors to measure nuclear recoils, potentially leading to groundbreaking discoveries. | ERC COG | € 2.587.500 | 2023 | Details |
Multi-messenger Studies of Extragalactic Super-collidersThis project aims to explore proton acceleration, jet formation, and neutrino production in active galactic nuclei using multi-messenger observations to enhance our understanding of extreme cosmic energy processes. | ERC ADG | € 2.799.989 | 2025 | Details |
Why a new neutrino telescope? Because we can.
NEUTRINOSHOT aims to develop a multi-cubic-kilometre neutrino telescope in the Pacific Ocean to enhance detection of ultra-high energy cosmic rays and advance our understanding of the universe.
A revolutionary archaeological Pb observatory for astrophysical neutrino sources
RES-NOVA aims to revolutionize neutrino detection from supernovae using cryogenic archaeological Pb detectors, enabling precise measurements of neutrino signals and advancing multi-messenger astronomy.
Dark matter and neutrino experiment with monolithic arrays of cryogenic detectors
DANAE aims to enhance the detection of low energy neutrinos and Dark Matter by using advanced superconducting detectors to measure nuclear recoils, potentially leading to groundbreaking discoveries.
Multi-messenger Studies of Extragalactic Super-colliders
This project aims to explore proton acceleration, jet formation, and neutrino production in active galactic nuclei using multi-messenger observations to enhance our understanding of extreme cosmic energy processes.