Enhancing emergency department safety, efficacy and cost-effectiveness by artificial intelligence

Develop a machine learning-based clinical decision support system for emergency medicine to enhance diagnosis accuracy, patient safety, and cost-effectiveness through validated algorithms and patient data integration.

Subsidie
€ 2.497.200
2022

Projectdetails

  • Background: Emergency care costs are increasing in developed societies, both in rates of emergency department (ED) visits per person and in costs per visit, and are growing faster than other areas of healthcare spending.

With limited and unstructured data, ED staff make quick decisions about probabilities for multiple diagnoses and risks. Both underestimation and overestimation of these probabilities lead to increased costs and patient harm. Hence, there is a desperate need for clinical decision-support systems in the ED.

Aim

To develop a clinical decision support system for emergency medicine doctors, using sensor data, health records data, and patient-reported data, validated in a randomized clinical trial, in order to improve the safety, efficacy, and cost-effectiveness of emergency care.

Objectives

We will:

  1. Develop machine learning (ML)-powered diagnosis and risk prediction algorithms for common and dangerous conditions based on age, sex, presenting complaints, previous diagnoses, ECGs, and vital parameters.
  2. Develop and validate a patient-centered technical platform for collecting, storing, and sharing patient-reported data and three-dimensional symptom drawings.
  3. Develop ML-powered diagnosis and risk prediction algorithms for common and dangerous conditions based on patient-reported data and symptom drawings.
  4. Conduct a large-scale prospective ED data collection for internal and external validation of ML models using a common format for online applications and for further data collection.
  5. Develop a Bayesian network-powered ED-based clinical decision support system that generates probabilities for diagnoses and 30-day mortality risks and suggestions for the most valuable next step, from data in multiple formats, with visual representation of probabilities, risks, uncertainties, and Bayes factors for potential next steps.
  6. Conduct a randomized clinical trial investigating the usefulness, effectiveness, and safety of the new decision support system.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.497.200
Totale projectbegroting€ 2.497.200

Tijdlijn

Startdatum1-10-2022
Einddatum30-9-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • UPPSALA UNIVERSITETpenvoerder

Land(en)

Sweden

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Optimize risk prediction after myocardial infarction through artificial intelligence and multidimensional evaluation

This project aims to enhance myocardial infarction risk prediction by integrating data from wearable devices, biomarkers, and AI to identify novel risk factors for improved clinical decision-making.

€ 1.405.894
MIT Haalbaarheid

Primaire zorg: van routinematige naar datagedreven en zelflerende zorg

Het project onderzoekt de haalbaarheid van een beslisondersteuningstool voor primaire zorg in India, gericht op het optimaliseren van zorg door het gebruik van Real World data.

€ 20.000
MIT Haalbaarheid

MEDLINE V3.0: AI BASED TRIAGE PROCEDURES

Medical Booking B.V. ontwikkelt een meertalig AI-gestuurd triagesysteem dat gebruikmaakt van spraaktechnologie en patiëntinformatie om de zorgdruk te verlagen en triage-uitkomsten te verbeteren.

€ 20.000
MIT Haalbaarheid

Decision support system voor medische diagnoses

Nobleo ontwikkelt een AI-gestuurd decision support systeem voor medische specialisten om diagnoses te verbeteren, zorgkosten te verlagen en de haalbaarheid van de oplossing te onderzoeken.

€ 20.000