Enhancing emergency department safety, efficacy and cost-effectiveness by artificial intelligence
Develop a machine learning-based clinical decision support system for emergency medicine to enhance diagnosis accuracy, patient safety, and cost-effectiveness through validated algorithms and patient data integration.
Projectdetails
- Background: Emergency care costs are increasing in developed societies, both in rates of emergency department (ED) visits per person and in costs per visit, and are growing faster than other areas of healthcare spending.
With limited and unstructured data, ED staff make quick decisions about probabilities for multiple diagnoses and risks. Both underestimation and overestimation of these probabilities lead to increased costs and patient harm. Hence, there is a desperate need for clinical decision-support systems in the ED.
Aim
To develop a clinical decision support system for emergency medicine doctors, using sensor data, health records data, and patient-reported data, validated in a randomized clinical trial, in order to improve the safety, efficacy, and cost-effectiveness of emergency care.
Objectives
We will:
- Develop machine learning (ML)-powered diagnosis and risk prediction algorithms for common and dangerous conditions based on age, sex, presenting complaints, previous diagnoses, ECGs, and vital parameters.
- Develop and validate a patient-centered technical platform for collecting, storing, and sharing patient-reported data and three-dimensional symptom drawings.
- Develop ML-powered diagnosis and risk prediction algorithms for common and dangerous conditions based on patient-reported data and symptom drawings.
- Conduct a large-scale prospective ED data collection for internal and external validation of ML models using a common format for online applications and for further data collection.
- Develop a Bayesian network-powered ED-based clinical decision support system that generates probabilities for diagnoses and 30-day mortality risks and suggestions for the most valuable next step, from data in multiple formats, with visual representation of probabilities, risks, uncertainties, and Bayes factors for potential next steps.
- Conduct a randomized clinical trial investigating the usefulness, effectiveness, and safety of the new decision support system.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.497.200 |
Totale projectbegroting | € 2.497.200 |
Tijdlijn
Startdatum | 1-10-2022 |
Einddatum | 30-9-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UPPSALA UNIVERSITETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Optimize risk prediction after myocardial infarction through artificial intelligence and multidimensional evaluationThis project aims to enhance myocardial infarction risk prediction by integrating data from wearable devices, biomarkers, and AI to identify novel risk factors for improved clinical decision-making. | ERC STG | € 1.405.894 | 2024 | Details |
Primaire zorg: van routinematige naar datagedreven en zelflerende zorgHet project onderzoekt de haalbaarheid van een beslisondersteuningstool voor primaire zorg in India, gericht op het optimaliseren van zorg door het gebruik van Real World data. | MIT Haalbaarheid | € 20.000 | 2021 | Details |
MEDLINE V3.0: AI BASED TRIAGE PROCEDURESMedical Booking B.V. ontwikkelt een meertalig AI-gestuurd triagesysteem dat gebruikmaakt van spraaktechnologie en patiëntinformatie om de zorgdruk te verlagen en triage-uitkomsten te verbeteren. | MIT Haalbaarheid | € 20.000 | 2020 | Details |
Decision support system voor medische diagnosesNobleo ontwikkelt een AI-gestuurd decision support systeem voor medische specialisten om diagnoses te verbeteren, zorgkosten te verlagen en de haalbaarheid van de oplossing te onderzoeken. | MIT Haalbaarheid | € 20.000 | 2020 | Details |
Optimize risk prediction after myocardial infarction through artificial intelligence and multidimensional evaluation
This project aims to enhance myocardial infarction risk prediction by integrating data from wearable devices, biomarkers, and AI to identify novel risk factors for improved clinical decision-making.
Primaire zorg: van routinematige naar datagedreven en zelflerende zorg
Het project onderzoekt de haalbaarheid van een beslisondersteuningstool voor primaire zorg in India, gericht op het optimaliseren van zorg door het gebruik van Real World data.
MEDLINE V3.0: AI BASED TRIAGE PROCEDURES
Medical Booking B.V. ontwikkelt een meertalig AI-gestuurd triagesysteem dat gebruikmaakt van spraaktechnologie en patiëntinformatie om de zorgdruk te verlagen en triage-uitkomsten te verbeteren.
Decision support system voor medische diagnoses
Nobleo ontwikkelt een AI-gestuurd decision support systeem voor medische specialisten om diagnoses te verbeteren, zorgkosten te verlagen en de haalbaarheid van de oplossing te onderzoeken.