Curvilinear multiferroics
This project aims to develop curvilinear multiferroics by using geometric curvature to create new materials for energy-efficient computing, enhancing memory and logic devices beyond current technologies.
Projectdetails
Introduction
Disruptive development of brain-inspired computing, machine learning, and deep neural networks for electronic assistants in smartphones, autonomous driving systems, or ChatGPT requires new logic and storage concepts, which are beyond conventional von Neumann computer architectures.
Key Enablers
Materials known as multiferroics are identified as key enablers of these technologies. In contrast to ferromagnets, where the magnetic state is controlled by magnetic fields (energy inefficient due to flowing currents), magnetoelectric multiferroics allow manipulation of magnetic states by electric fields.
Challenges with Current Materials
The great promise of multiferroic materials towards energy-efficient computing is compromised by the limited material portfolio. Literally, after decades of research, we have only one multiferroic (i.e., BiFeO3) potentially promising for room temperature spintronic devices. Even this most advanced material meets challenges outperforming state-of-the-art CMOS elements.
Current Design Approaches
The mainstream approach to design magnetoelectrics is to induce ferroelectric ordering in magnets to control non-volatile magnetic states electrically. Although intuitively understandable, this concept has failed to provide a technologically relevant multiferroic.
Proposed Paradigm Shift
Here, we propose a paradigm shift in the design of multiferroic materials. Instead of trying to induce ferroelectricity, we will realize curvilinear multiferroics by imposing ferrotoroidal order in geometrically curved magnetic thin films.
Predictions and Implications
Fundamentally, we predict that effects of geometric curvature and inhomogeneous mechanical strain will induce a sizeable ferrotoroidal order parameter in any magnetically ordered material, rendering this material multiferroic. Hence, curvilinear systems will turn rare ferrotoroidic materials into a broadly populated material class, available for material science and technologies similar to conventional ferromagnets.
Project Goals
This project will enable curvilinear multiferroics and validate their application potential for memory and logic devices.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.500.000 |
Totale projectbegroting | € 2.500.000 |
Tijdlijn
Startdatum | 1-8-2024 |
Einddatum | 31-7-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF EVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Magnetic alloys and compounds for ultra-high harmonics spin current generationMAGNETALLIEN aims to develop innovative magnetic-based platforms for efficient spin current generation and ultra-high harmonics production, enhancing energy efficiency in data processing and transfer. | ERC COG | € 1.996.550 | 2024 | Details |
Multi-property Compositionally Complex Magnets for Advanced Energy ApplicationsThe CoCoMag project aims to develop innovative, critical-element-free magnets using compositionally complex alloys to enhance e-mobility and magnetic refrigeration for a sustainable energy future. | EIC Pathfinder | € 2.987.943 | 2023 | Details |
Ultralow-power logic-in-memory devices based on ferroelectric two-dimensional electron gasesUPLIFT aims to develop a non-volatile, ultralow power logic-in-memory component using ferroelectric materials to reduce power consumption in microelectronics, supporting a new start-up for commercialization. | ERC POC | € 150.000 | 2023 | Details |
Engineering Magneto-ionic Materials for Energy-Efficient Actuation and Sensing: From Interfaces to Multifunctional Voltage-Tunable MicromagnetsACTIONS aims to develop energy-efficient magneto-ionic materials for low-power actuation and sensing in micro- and nanotechnologies by utilizing electrochemical reactions for magnetic control. | ERC COG | € 1.994.165 | 2024 | Details |
Magnetic alloys and compounds for ultra-high harmonics spin current generation
MAGNETALLIEN aims to develop innovative magnetic-based platforms for efficient spin current generation and ultra-high harmonics production, enhancing energy efficiency in data processing and transfer.
Multi-property Compositionally Complex Magnets for Advanced Energy Applications
The CoCoMag project aims to develop innovative, critical-element-free magnets using compositionally complex alloys to enhance e-mobility and magnetic refrigeration for a sustainable energy future.
Ultralow-power logic-in-memory devices based on ferroelectric two-dimensional electron gases
UPLIFT aims to develop a non-volatile, ultralow power logic-in-memory component using ferroelectric materials to reduce power consumption in microelectronics, supporting a new start-up for commercialization.
Engineering Magneto-ionic Materials for Energy-Efficient Actuation and Sensing: From Interfaces to Multifunctional Voltage-Tunable Micromagnets
ACTIONS aims to develop energy-efficient magneto-ionic materials for low-power actuation and sensing in micro- and nanotechnologies by utilizing electrochemical reactions for magnetic control.