Engineering Magneto-ionic Materials for Energy-Efficient Actuation and Sensing: From Interfaces to Multifunctional Voltage-Tunable Micromagnets

ACTIONS aims to develop energy-efficient magneto-ionic materials for low-power actuation and sensing in micro- and nanotechnologies by utilizing electrochemical reactions for magnetic control.

Subsidie
€ 1.994.165
2024

Projectdetails

Introduction

ACTIONS proposes a material-based concept to drastically reduce the energy consumption of magnet-based micro- and nanotechnologies. Magnetic systems offer unique advantages for actuation in miniature fluidic and robotic systems, but their integration is hindered because electromagnets are required to create time-varying magnetic fields, causing joule energy loss and heat effects.

Alternative Solutions

Alternative control of magnetic materials using an electric field instead of electric current would present an energy-efficient solution. However, established magnetoelectric effects are small and restricted to low temperature or high voltage. Recently, we have demonstrated low-voltage control of magnetic films in liquid electrolytes by exploiting electrochemical reactions and ionic motion.

Project Goals

ACTIONS targets the engineering of these emerging magneto-ionic materials to use their immense unexplored potential for low power actuation. The innovative strategy of ACTIONS is to:

  1. Transfer magneto-ionic effects of ferromagnetic metal thin films in liquid electrolytes to 3D nanomagnets and assemblies with defined anisotropy and at critical points.
  2. Use a unique combination of in situ analytical and magnetic techniques to study the magneto-ionic control of magnetization.
  3. Attain magneto-ionic micromagnets with voltage-reconfigurable stray fields, which can potentially replace microelectromagnets.

Cross-Linking Electrochemistry and Magnetism

Additionally, ACTIONS recognizes the inherent cross-link between electrochemistry and magnetism in magneto-ionic systems as a ground-breaking route to combine actuation and sensing in one material. Interfacial chemistry sensing will be based on the electrical response.

Final Objective

The final objective is to identify materials in which actuation and sensing can be programmed on demand by a voltage protocol. The concept in ACTIONS goes beyond conventional multifunctional composites and could establish a paradigm change in magnetic technologies and a novel class of energy-saving smart materials.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.994.165
Totale projectbegroting€ 1.994.165

Tijdlijn

Startdatum1-3-2024
Einddatum28-2-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • TECHNISCHE UNIVERSITAET CHEMNITZpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

ELEctrically ConTRolled magnetic Anisotropy

ELECTRA aims to develop a novel technique to control the Spin-Electric effect in magnetic molecules, enhancing energy-efficient device design for information technology.

€ 1.498.784
ERC STG

Chemical Design of Smart Molecular/2D Devices for Information Technologies

2D-SMARTiES aims to develop low-power, tunable magnonic devices using hybrid molecular/2D heterostructures for enhanced information technology applications through controlled spin dynamics.

€ 1.499.240
ERC ADG

Voltage-Reconfigurable Magnetic Invisibility: A New Concept for Data Security Based on Engineered Magnetoelectric Materials

REMINDS aims to revolutionize data security by using voltage to manipulate magnetism at the material level, enabling energy-efficient, hidden data storage and retrieval with potential anti-counterfeiting applications.

€ 2.499.940
ERC POC

Nanoscale Integrated Magnetic Field Sensor

Develop a low-cost, nano-sized magnetoresistive sensor with an extended sensing range and reduced power consumption for applications in IoT, wearables, and automotive technologies.

€ 150.000