Ultralow-power logic-in-memory devices based on ferroelectric two-dimensional electron gases
UPLIFT aims to develop a non-volatile, ultralow power logic-in-memory component using ferroelectric materials to reduce power consumption in microelectronics, supporting a new start-up for commercialization.
Projectdetails
Introduction
Microelectronics components are at the core of our modern economies. The corresponding global market is exponentially growing at an annual pace of 10-15% and should reach the trillion $ by 2030.
Technological Framework
The techno-economic framework that has been driving this industry is based on:
- Boolean logic
- von Neumann architectures (with separated computing and memory units)
- CMOS transistors
It is pictured by the famous Moore's law, describing the continuous shrinking of transistor size. For years, Dennard's scaling law of power consumption provided a path to shrinking such transistors while keeping the power density constant.
Current Challenges
However, as technological nodes become today as small as tens of atoms, we are hitting fundamental limits, leading to heating and preventing this downscaling. Simultaneously, the power consumption of information and communication technologies (ICT) represents nearly 5% of the world's energy consumption.
Need for Innovation
To mitigate these civilizational issues, new devices and architectures for ICT must be invented. The consensus reached by the microelectronics community is that to reduce power consumption:
- Memory and logic units must be brought together
- The inherent nonvolatile properties of ferroic materials are a valuable asset to avoid static power consumption.
Project Overview
UPLIFT proposes to develop the proof of concept (POC) of a non-volatile, spin-based, ultralow power (aJ) logic-in-memory component, coined FESO, which harnesses the ferroelectric control of spin-charge interconversion discovered within the ERC FRESCO.
Technical Goals
We will pattern devices down to the 100 nm scale and aim for:
- 100 mV output voltages
- 1 ns operation speed
- Endurance > 10^9 cycles
Commercial Exploitation
UPLIFT will benefit from a well-defined path towards commercial exploitation, including a decade-long collaboration between the Principal Investigator (PI) and two researchers from Spintec in Grenoble. Together, they are launching a start-up company that will exploit the patent portfolio filed within FRESCO.
Future Prospects
This POC project will serve both as support and a propeller for the start-up, to be created in Q1 2024.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 28-2-2025 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Spins in two-dimensional materials for tunable magnetic and optoelectronic devicesThis project aims to integrate 2D materials for efficient magnetic devices and optical communication, enabling energy-efficient data storage and transport at the nanoscale. | ERC STG | € 1.500.000 | 2023 | Details |
Strain-Free All Heusler Alloy JunctionsThis project aims to develop a low-power ferrimagnetic Heusler-alloy film for spintronic devices, utilizing atomic engineering to enhance magnetic properties and simplify production processes. | ERC ADG | € 3.108.441 | 2024 | Details |
Layering, Understanding, Controlling and Integrating Ferroelectric Polar Textures on SiliconThe project aims to integrate topological polar textures in nanoscale ferroelectrics onto silicon platforms to enable energy-efficient, ultra-compact electronic devices through advanced engineering techniques. | ERC ADG | € 2.499.960 | 2023 | Details |
Curvilinear multiferroicsThis project aims to develop curvilinear multiferroics by using geometric curvature to create new materials for energy-efficient computing, enhancing memory and logic devices beyond current technologies. | ERC ADG | € 2.500.000 | 2024 | Details |
Spins in two-dimensional materials for tunable magnetic and optoelectronic devices
This project aims to integrate 2D materials for efficient magnetic devices and optical communication, enabling energy-efficient data storage and transport at the nanoscale.
Strain-Free All Heusler Alloy Junctions
This project aims to develop a low-power ferrimagnetic Heusler-alloy film for spintronic devices, utilizing atomic engineering to enhance magnetic properties and simplify production processes.
Layering, Understanding, Controlling and Integrating Ferroelectric Polar Textures on Silicon
The project aims to integrate topological polar textures in nanoscale ferroelectrics onto silicon platforms to enable energy-efficient, ultra-compact electronic devices through advanced engineering techniques.
Curvilinear multiferroics
This project aims to develop curvilinear multiferroics by using geometric curvature to create new materials for energy-efficient computing, enhancing memory and logic devices beyond current technologies.