Treatment planning assessment for the Optiflux radiosurgery system
Dit project ontwikkelt een innovatieve radiotherapie met sub-MeV X-stralen voor nauwkeurige tumorbehandeling en minder schade aan omliggende organen.
Projectdetails
Inleiding
In collaboration with technology partners from several high-tech sectors, we're developing a fundamentally novel radiation treatment principle whereby less damaging, sub-MeV X-ray beams are intersected precisely at the site of the tumor, sparing surrounding organs and offering greater precision.
Beperkingen van Huidige Behandelingen
The patient’s ability to bear radiation damage and side effects is the main limitation in successful cancer treatment and ultimately determines when a patient is considered “terminal.” A device that is both less damaging and more precise could help treat patients that are less radiation-tolerant as well as shorten the total timespan of treatment.
Doelgroep en Impact
This could hopefully offer a new perspective for (intractable) advanced, aggressive, diffuse, and pediatric cancers.
Ontwikkeling van Technologie
The technology was discovered by the ESA, which sparked the commissioning of an innovative new type of space telescope (to be launched in 2031). Combining this technology with the lithography, mechatronics, and clinical expertise present in the Brainport region, we are likely able to turn this into a much less damaging radiotherapy system than the LINAC, Proton, and Gamma options that are currently used.
Doel van de Feasibility Study
This feasibility study is aimed at assessing the clinical efficacy of the envisioned system in virtual Treatment Planning Software (TPS), where it can be benchmarked against today’s most advanced LINAC, Proton, and Gamma systems on a case-by-case basis.
Voordelen van de Studie
This prevents the scenario of investing in years of development before discovering at the end of clinical trials that the system cannot produce significant improvements.
Volgende Stappen
The novel principle first has to be replicated in the simulation environment, cases have to be selected, and outcomes have to be interpreted.
Validatie en Interpretatie
The auditing of validity and interpreting of outcomes will be done by associated cancer centres: Erasmus MC Cancer Institute, Antoni van Leeuwenhoek Netherlands Cancer Institute, and DKFZ German Cancer Research Centre.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 20.000 |
Totale projectbegroting | € 78.600 |
Tijdlijn
Startdatum | 3-5-2021 |
Einddatum | 10-10-2021 |
Subsidiejaar | 2021 |
Partners & Locaties
Projectpartners
- X-ray B.V.penvoerder
Land(en)
Vergelijkbare projecten binnen MIT Haalbaarheid
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Single crystal diffraction assessment for the Optiflux radiosurgery systemDit project ontwikkelt een innovatieve radiotherapie met sub-MeV X-stralen voor nauwkeurige tumorbehandeling en minder schade aan omliggende organen. | Mkb-innovati... | € 20.000 | 2021 | Details |
Onderzoek naar AI-based second opinionHet project onderzoekt de haalbaarheid van een AI-platform voor optimale kankerbehandelplannen via geüploade patiëntdata. | Mkb-innovati... | € 20.000 | 2023 | Details |
Haalbaarheidsstudie naar een Tumor Antigeen ScreeningplatformRx-Biologicals ontwikkelt een tumor antigeen screeningplatform om de effectiviteit van kankerbehandelingen te vergroten, met een haalbaarheidsonderzoek van april tot december 2020. | Mkb-innovati... | € 20.000 | 2020 | Details |
Single crystal diffraction assessment for the Optiflux radiosurgery system
Dit project ontwikkelt een innovatieve radiotherapie met sub-MeV X-stralen voor nauwkeurige tumorbehandeling en minder schade aan omliggende organen.
Onderzoek naar AI-based second opinion
Het project onderzoekt de haalbaarheid van een AI-platform voor optimale kankerbehandelplannen via geüploade patiëntdata.
Haalbaarheidsstudie naar een Tumor Antigeen Screeningplatform
Rx-Biologicals ontwikkelt een tumor antigeen screeningplatform om de effectiviteit van kankerbehandelingen te vergroten, met een haalbaarheidsonderzoek van april tot december 2020.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Radically New Cancer Therapy Based on Advances in Nanotechnology and Photonics for Simultaneous Imaging and Treatment of Solid TumoursScanNanoTreat aims to revolutionize cancer treatment by integrating advanced imaging and therapy technologies to improve patient outcomes and reduce costs, targeting clinical trials by 2027. | EIC Transition | € 2.499.911 | 2025 | Details |
Very High Energy Electrons Beam for RadiotherapyeBeam4Therapy aims to revolutionize cancer treatment by developing compact, cost-effective VHEE radiotherapy using laser plasma accelerators to improve patient outcomes and reduce side effects. | EIC Transition | € 2.477.043 | 2022 | Details |
2D Material-Based Multiple Oncotherapy Against Metastatic Disease Using a Radically New Computed Tomography ApproachPERSEUS aims to develop a novel nanotechnology-based cancer therapy that activates under CT imaging to treat deep-seated, drug-resistant tumors with minimal side effects. | EIC Pathfinder | € 2.740.675 | 2023 | Details |
Nanoscintillators to potentiate brain cancer radiotherapy: from physics to preclinical trialsThis project aims to enhance radiation therapy for glioblastoma by studying nanoscintillators' effects on tumor tissues, improving treatment efficacy while minimizing damage to healthy cells. | ERC Starting... | € 1.948.125 | 2024 | Details |
Gamma-Neutron Vision aimed at improved cancer treatments in Hadron TherapyThis project aims to develop a portable device for simultaneous gamma-ray and thermal neutron imaging to enhance ion-range verification and secondary neutron dose assessment in proton therapy. | ERC Proof of... | € 150.000 | 2024 | Details |
Radically New Cancer Therapy Based on Advances in Nanotechnology and Photonics for Simultaneous Imaging and Treatment of Solid Tumours
ScanNanoTreat aims to revolutionize cancer treatment by integrating advanced imaging and therapy technologies to improve patient outcomes and reduce costs, targeting clinical trials by 2027.
Very High Energy Electrons Beam for Radiotherapy
eBeam4Therapy aims to revolutionize cancer treatment by developing compact, cost-effective VHEE radiotherapy using laser plasma accelerators to improve patient outcomes and reduce side effects.
2D Material-Based Multiple Oncotherapy Against Metastatic Disease Using a Radically New Computed Tomography Approach
PERSEUS aims to develop a novel nanotechnology-based cancer therapy that activates under CT imaging to treat deep-seated, drug-resistant tumors with minimal side effects.
Nanoscintillators to potentiate brain cancer radiotherapy: from physics to preclinical trials
This project aims to enhance radiation therapy for glioblastoma by studying nanoscintillators' effects on tumor tissues, improving treatment efficacy while minimizing damage to healthy cells.
Gamma-Neutron Vision aimed at improved cancer treatments in Hadron Therapy
This project aims to develop a portable device for simultaneous gamma-ray and thermal neutron imaging to enhance ion-range verification and secondary neutron dose assessment in proton therapy.