Gamma-Neutron Vision aimed at improved cancer treatments in Hadron Therapy

This project aims to develop a portable device for simultaneous gamma-ray and thermal neutron imaging to enhance ion-range verification and secondary neutron dose assessment in proton therapy.

Subsidie
€ 150.000
2024

Projectdetails

Introduction

Proton therapy represents one of the most recent and advanced tools in cancer treatment, especially for complex cases and pediatric patients. Despite its exponential deployment worldwide, hadron therapy still faces two main limitations, which are related to:

  1. Accurate ion-range verification
  2. Assessment of the secondary (unwanted) neutron dose

Project Overview

The present proposal presents an innovative tool that can help to improve this situation and thus increase the potential benefits of hadron therapy. This project focuses on a portable device that can simultaneously image both gamma-rays and thermal neutrons, which are ineluctably produced during the treatment.

Thermal Neutron Imaging

On one hand, imaging thermal neutrons may help to quantify more reliably the secondary neutron dose received by the patient during therapy.

Gamma-Ray Imaging

Complementary gamma-ray imaging is accomplished with the same apparatus by means of electronic collimation, thus enabling real-time assessment of the ion-range. In terms of gamma-vision, the system has been recently tested in pre-clinical conditions at CNA-Seville and HIT-Heidelberg.

Project Goals

This POC project aims therefore at demonstrating the additional neutron-vision capability, thereby elevating the full GNVision system to TRL6, and addressing its commercial viability in the health sector.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2025
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICASpenvoerder

Land(en)

Spain

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Prompt Gamma Time Imaging: a new medical-imaging modality for adaptive Particle Therapy

The project aims to enhance particle therapy efficacy and safety by developing Prompt Gamma Time Imaging for real-time monitoring of treatment, improving dose control and adaptive dosimetry.

€ 1.498.969
ERC COG

Portal Range Monitoring in Mixed Ion Beam Surgery

PROMISE aims to revolutionize carbon ion radiotherapy by developing mixed ion beams for real-time tumor monitoring, enhancing treatment precision and potentially improving patient outcomes.

€ 2.000.000
EIC Pathfinder

NEXT GENERATION IMAGING FOR REAL-TIME DOSE VERIFICATION ENABLING ADAPTIVE PROTON THERAPY

The NOVO project aims to develop a groundbreaking real-time dose verification technology for proton radiotherapy, enhancing personalized cancer treatment and improving patient outcomes.

€ 3.759.489
EIC Pathfinder

Development of innovative proton and neutron therapies with high cancer specificity by 'hijacking' the intracellular chemistry of haem biosynthesis.

NuCapCure aims to develop novel cancer treatments for glioblastoma by utilizing custom-made drugs through biosynthesis to enhance proton and neutron therapies for better targeting and efficacy.

€ 5.972.875