Single crystal diffraction assessment for the Optiflux radiosurgery system
Dit project ontwikkelt een innovatieve radiotherapie met sub-MeV X-stralen voor nauwkeurige tumorbehandeling en minder schade aan omliggende organen.
Projectdetails
Inleiding
In collaboration with technology partners from several high-tech sectors, we're developing a fundamentally novel radiation treatment principle whereby less damaging, sub-MeV X-ray beams are intersected precisely at the site of the tumor, sparing surrounding organs and offering greater precision.
Probleemstelling
The patient’s ability to bear radiation damage and side effects is the main limitation in successful cancer treatment and ultimately determines when a patient is considered “terminal.” A device that is both less damaging and more precise could help treat patients that are less radiation-tolerant, as well as shorten the total timespan of treatment. This offers a new perspective for (intractable) advanced, aggressive, diffuse, and pediatric cancers.
Technologie
The technology was discovered by the ESA, which sparked the commissioning of an innovative new type of space telescope (to be launched in 2031). Combining this technology with the lithography, mechatronics, and clinical expertise present in the Brainport region, we are likely able to turn this into a much less damaging radiotherapy system than the LINAC, Proton, and Gamma options that are currently used.
Doel van de studie
This feasibility study is aimed at assessing single crystals and their properties with respect to the system requirement on the desired X-ray beam geometry. Different properties of crystals such as:
- Quasi-mosaicity
- Curvature
- The Miller plane
will be assessed. The lens design and its manufacturability, enabled by single crystals selected, will be assessed and lead to the final system design.
Samenwerking
The work conducted during the project is separated between us and the external company Cosine Measurement Systems, which is an industrialization partner for the lens technology.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 20.000 |
Totale projectbegroting | € 63.000 |
Tijdlijn
Startdatum | 5-5-2021 |
Einddatum | 20-8-2021 |
Subsidiejaar | 2021 |
Partners & Locaties
Projectpartners
- X-ray B.V.penvoerder
Land(en)
Vergelijkbare projecten binnen MIT Haalbaarheid
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Treatment planning assessment for the Optiflux radiosurgery systemDit project ontwikkelt een innovatieve radiotherapie met sub-MeV X-stralen voor nauwkeurige tumorbehandeling en minder schade aan omliggende organen. | Mkb-innovati... | € 20.000 | 2021 | Details |
PMX: Poor man's X-FELDoctor X Works onderzoekt de haalbaarheid van een 'plug and play' opstelling voor ultrasnelle elektronenmicroscopie voor commerciële laboratoria. | Mkb-innovati... | € 20.000 | 2020 | Details |
Röntgentechnologie; een doorkijk naar de toekomstige mogelijkhedenInner B.V. ontwikkelt duurzame röntgentechnologie voor de levensmiddelenindustrie om contaminanten efficiënter te detecteren. | Mkb-innovati... | € 20.000 | 2023 | Details |
Treatment planning assessment for the Optiflux radiosurgery system
Dit project ontwikkelt een innovatieve radiotherapie met sub-MeV X-stralen voor nauwkeurige tumorbehandeling en minder schade aan omliggende organen.
PMX: Poor man's X-FEL
Doctor X Works onderzoekt de haalbaarheid van een 'plug and play' opstelling voor ultrasnelle elektronenmicroscopie voor commerciële laboratoria.
Röntgentechnologie; een doorkijk naar de toekomstige mogelijkheden
Inner B.V. ontwikkelt duurzame röntgentechnologie voor de levensmiddelenindustrie om contaminanten efficiënter te detecteren.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Emerging technologies for crystal-based gamma-ray light sourcesTECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology. | EIC Pathfinder | € 2.643.187 | 2022 | Details |
Radically New Cancer Therapy Based on Advances in Nanotechnology and Photonics for Simultaneous Imaging and Treatment of Solid TumoursScanNanoTreat aims to revolutionize cancer treatment by integrating advanced imaging and therapy technologies to improve patient outcomes and reduce costs, targeting clinical trials by 2027. | EIC Transition | € 2.499.911 | 2025 | Details |
Nanoscintillators to potentiate brain cancer radiotherapy: from physics to preclinical trialsThis project aims to enhance radiation therapy for glioblastoma by studying nanoscintillators' effects on tumor tissues, improving treatment efficacy while minimizing damage to healthy cells. | ERC Starting... | € 1.948.125 | 2024 | Details |
Live Cell Spectroscopy Analysis for Personalised Particle Radiation Therapy of Metastatic Bone CancerBoneOscopy aims to revolutionize metastatic bone cancer treatment by enabling daily monitoring during particle radiotherapy, enhancing personalized care and treatment efficacy. | EIC Pathfinder | € 3.069.321 | 2025 | Details |
2D Material-Based Multiple Oncotherapy Against Metastatic Disease Using a Radically New Computed Tomography ApproachPERSEUS aims to develop a novel nanotechnology-based cancer therapy that activates under CT imaging to treat deep-seated, drug-resistant tumors with minimal side effects. | EIC Pathfinder | € 2.740.675 | 2023 | Details |
Emerging technologies for crystal-based gamma-ray light sources
TECHNO-CLS aims to develop novel gamma-ray light sources using oriented crystals and high-energy particle beams, enhancing applications in various scientific fields through innovative technology.
Radically New Cancer Therapy Based on Advances in Nanotechnology and Photonics for Simultaneous Imaging and Treatment of Solid Tumours
ScanNanoTreat aims to revolutionize cancer treatment by integrating advanced imaging and therapy technologies to improve patient outcomes and reduce costs, targeting clinical trials by 2027.
Nanoscintillators to potentiate brain cancer radiotherapy: from physics to preclinical trials
This project aims to enhance radiation therapy for glioblastoma by studying nanoscintillators' effects on tumor tissues, improving treatment efficacy while minimizing damage to healthy cells.
Live Cell Spectroscopy Analysis for Personalised Particle Radiation Therapy of Metastatic Bone Cancer
BoneOscopy aims to revolutionize metastatic bone cancer treatment by enabling daily monitoring during particle radiotherapy, enhancing personalized care and treatment efficacy.
2D Material-Based Multiple Oncotherapy Against Metastatic Disease Using a Radically New Computed Tomography Approach
PERSEUS aims to develop a novel nanotechnology-based cancer therapy that activates under CT imaging to treat deep-seated, drug-resistant tumors with minimal side effects.