Ultrathin Two-Dimensional Polymer Heterostructure Membranes Enabling Unidirectional Ion Transport
This project aims to develop innovative 2D polymer heterostructure membranes for selective and unidirectional ion transport, enhancing energy device performance and efficiency.
Projectdetails
Introduction
Current separation technology is crucial for many aspects of human life and accounts for approximately 15% of the world’s energy consumption. While the particle flow through separation columns is directional at the atomistic scale, undirected Brownian motion dominates in state-of-the-art membranes.
Potential of 2D Membranes
2D membranes have the potential to overcome this intrinsic deficiency and shift the paradigm of particle transport from disordered Brownian motion to unidirectional flow.
Development of 2D Polymer Heterostructure Membranes
We will develop unprecedented 2D polymer heterostructure membranes (2DHMs) combined with functionalized graphene. They offer:
- Ultimate thinness (leading to shortest diffusion lengths)
- Precision pore geometry/size (resulting in high size-selectivity, even for hydrogen isotopes)
- High functionality (fostering chemical/charge selectivity and ionic gating)
These features make them ideal membrane materials to realize selective and unidirectional ion transport.
Expertise and Synthesis
We will combine our complementary expertise in:
- Theory and prediction
- Chemical design
- On-water/liquid surface synthesis
- In-situ ion transport investigations
This collaboration will enable us to develop robust 2DHMs.
Structure-Property Correlations
We will synthesize 2DHMs in the form of horizontal and vertical heterostructures, for which reliable structure-property correlations will be established. We will take advantage of lattice vibrations, nuclear quantum, and electrochemical effects, and consequently reformulate classical diffusion theory to consider these game changers.
Innovative Applications
As a result, we will achieve innovative 2DHMs for selective proton and ion transport with high permeance, laying the foundations for the next-generation membrane technologies.
Energy Device Integrations
2DPolymembrane will unlock the unique opportunities of 2DHMs for innovative energy device integrations, including:
- Proton/aqueous metal batteries
- Fuel cells
- Reverse osmotic power generators
The merits of ultrathin precision 2DHMs will result in the highest selectivity and highest particle flow, thus achieving fundamental device performance beyond the state-of-the-art.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 10.000.000 |
Totale projectbegroting | € 10.000.000 |
Tijdlijn
Startdatum | 1-4-2025 |
Einddatum | 31-3-2031 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder
- TECHNISCHE UNIVERSITAET DRESDEN
- UNIVERSITEIT LEIDEN
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Dynamic Ions under Nano-Confinement for Porous Membranes with Ultrafast Gas Permeation ControlDYONCON explores the dynamic properties of nanoconfined ions in ionic liquids and MOF films to enhance energy storage efficiency and enable ultrafast gas regulation. | ERC COG | € 1.995.925 | 2022 | Details |
Sustainable and HIgh Performance MEmbranes via iNTerfacial complexation (SHIPMENT)This project aims to enhance the water permeability of sustainable polyelectrolyte complex membranes by modifying the Aqueous Phase Separation technique with Interfacial Complexation for improved industrial viability. | ERC POC | € 150.000 | 2022 | Details |
Enabling Targeted Fractionation of Ions via Facilitated Transport MembranesThe IonFracMem project aims to design novel ion exchange membranes through interdisciplinary methods to enhance ion selectivity and throughput for water purification and energy capture. | ERC STG | € 1.498.250 | 2023 | Details |
Building charge-MOSAIC nanofiltration membranes for removing micro-pollutants from surface and drinking waterThis project aims to develop scalable charge-mosaic membranes using polyelectrolyte multilayers to efficiently remove organic micropollutants from water while minimizing energy use and waste. | ERC COG | € 2.000.000 | 2023 | Details |
Dynamic Ions under Nano-Confinement for Porous Membranes with Ultrafast Gas Permeation Control
DYONCON explores the dynamic properties of nanoconfined ions in ionic liquids and MOF films to enhance energy storage efficiency and enable ultrafast gas regulation.
Sustainable and HIgh Performance MEmbranes via iNTerfacial complexation (SHIPMENT)
This project aims to enhance the water permeability of sustainable polyelectrolyte complex membranes by modifying the Aqueous Phase Separation technique with Interfacial Complexation for improved industrial viability.
Enabling Targeted Fractionation of Ions via Facilitated Transport Membranes
The IonFracMem project aims to design novel ion exchange membranes through interdisciplinary methods to enhance ion selectivity and throughput for water purification and energy capture.
Building charge-MOSAIC nanofiltration membranes for removing micro-pollutants from surface and drinking water
This project aims to develop scalable charge-mosaic membranes using polyelectrolyte multilayers to efficiently remove organic micropollutants from water while minimizing energy use and waste.