Sustainable and HIgh Performance MEmbranes via iNTerfacial complexation (SHIPMENT)
This project aims to enhance the water permeability of sustainable polyelectrolyte complex membranes by modifying the Aqueous Phase Separation technique with Interfacial Complexation for improved industrial viability.
Projectdetails
Introduction
Membrane technology is a very sustainable approach to separation, as it requires much less energy than conventional separation approaches. However, the sustainable image of membranes becomes substantially tarnished when you realize that nearly all membranes are prepared using large quantities of toxic and unsustainable aprotic solvents (NMP, DMF, etc.).
Need for Sustainable Approaches
To secure the future of membrane technology, it becomes critical to develop more sustainable approaches to membrane fabrication. An Aqueous Phase Separation (APS) technique has recently been proposed by the PI as a green and sustainable alternative to the currently dominant non-solvent induced phase separation (NIPS) process.[1–4]
Aqueous Phase Separation (APS) Technique
APS utilizes polyelectrolytes such as:
- poly(sodium 4-styrenesulfonate) (PSS)
- poly(diallyldimethylammonium chloride) (PDADMAC)
- poly(allyl amine hydrochloride) (PAH)
- polyethyleneimine (PEI)
to obtain sustainable polyelectrolyte complex (PEC) membranes in a completely water-based process. The structure and morphology of these APS membranes can easily be controlled to produce excellent separation properties.
Performance Challenges
Although APS membranes show high solute retentions, the water permeability is much lower than NIPS membranes currently utilized for the same application. This originates from the fact that the separation is performed by the same material that gives the membrane its mechanical strength and porosity.
As a result, the water permeability is compromised when utilizing dense and mechanically strong membranes, but mechanical properties are poor when more swollen materials are used that provide high water permeability.
Commercial Production Obstacles
The lower water permeability of the existing APS membranes is now the major obstacle preventing their commercial production and large-scale industrial acceptance.
Proposed Solution
Herein, we propose a modification of the APS procedure by employing Interfacial Complexation (IC) during the phase inversion step to produce composite membranes that ultimately lead to the required high performances.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 150.000 |
Totale projectbegroting | € 150.000 |
Tijdlijn
Startdatum | 1-5-2022 |
Einddatum | 31-10-2023 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITEIT TWENTEpenvoerder
Land(en)
Geen landeninformatie beschikbaar
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Enabling Targeted Fractionation of Ions via Facilitated Transport MembranesThe IonFracMem project aims to design novel ion exchange membranes through interdisciplinary methods to enhance ion selectivity and throughput for water purification and energy capture. | ERC STG | € 1.498.250 | 2023 | Details |
Building charge-MOSAIC nanofiltration membranes for removing micro-pollutants from surface and drinking waterThis project aims to develop scalable charge-mosaic membranes using polyelectrolyte multilayers to efficiently remove organic micropollutants from water while minimizing energy use and waste. | ERC COG | € 2.000.000 | 2023 | Details |
Superhydrophobic membranes for clean water productionThe project aims to develop superhydrophobic membranes for membrane distillation to produce clean water from industrial waste, addressing water scarcity and pollution while enabling commercial applications. | EIC Transition | € 2.497.750 | 2023 | Details |
BIOmimetic selective extraction MEMbranesBIOMEM aims to create energy-efficient biomimetic membranes using biological transport proteins for selective extraction of valuable compounds and pollutants from water. | EIC Pathfinder | € 2.119.133 | 2024 | Details |
Enabling Targeted Fractionation of Ions via Facilitated Transport Membranes
The IonFracMem project aims to design novel ion exchange membranes through interdisciplinary methods to enhance ion selectivity and throughput for water purification and energy capture.
Building charge-MOSAIC nanofiltration membranes for removing micro-pollutants from surface and drinking water
This project aims to develop scalable charge-mosaic membranes using polyelectrolyte multilayers to efficiently remove organic micropollutants from water while minimizing energy use and waste.
Superhydrophobic membranes for clean water production
The project aims to develop superhydrophobic membranes for membrane distillation to produce clean water from industrial waste, addressing water scarcity and pollution while enabling commercial applications.
BIOmimetic selective extraction MEMbranes
BIOMEM aims to create energy-efficient biomimetic membranes using biological transport proteins for selective extraction of valuable compounds and pollutants from water.