Tracing the origin of clonal pathogenesis
This project aims to uncover how mutant clones in epithelial cancers evade protection mechanisms through genetic tracing and advanced genomics, potentially leading to new cancer prevention and treatment strategies.
Projectdetails
Introduction
Epithelial cancers are thought to evolve through a competitive process of mutation and selection in which the serial acquisition of oncogenic mutations confers an increasing fitness advantage, culminating in neoplastic transformation, tumour invasion, and metastasis. This programme often initiates through a phase of field cancerization in which mutant clones expand within the context of physiologically normal-looking tissue.
Protection Strategies
To mitigate the risks associated with field cancerization, protection strategies have evolved that resist mutant clone expansion. These strategies include:
- Development of anatomical features that limit clone growth.
- Activation of genetic and immunological surveillance mechanisms.
Despite these insights, our knowledge of how oncogenes act alone or in combination to evade these protection mechanisms to drive clonal pathogenesis remains largely unknown.
Research Approach
Here, by combining a unique genetic lineage tracing strategy with comparative single-cell genomics and quantitative modelling-based methods, we will define the mechanisms that mediate mutant clone competition.
Focus Areas
By placing an emphasis on the squamous and columnar epithelia of the GI tract, we will investigate whether and how:
- Injury and inflammatory cues enable tumorigenic clones to evade natural protection strategies.
- Ageing functions as a “second hit” in driving field cancerization and neoplastic transformation.
Translational Relevance
Finally, to explore the translational relevance of our findings, we will combine:
- DNA sequencing
- Single-cell methods
- Spatial transcriptomics
Additionally, we will design and genetically manipulate state-of-the-art 3D organ cultures to investigate mutant clone dynamics in human tissue.
Conclusion
By tracing the origins of clonal pathogenesis, these findings promise insights into the design of new prevention, detection, and treatment strategies, targeting the early stages of cancer progression.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 9.936.185 |
Totale projectbegroting | € 9.936.185 |
Tijdlijn
Startdatum | 1-4-2025 |
Einddatum | 31-3-2031 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGEpenvoerder
- TECHNISCHE UNIVERSITAET DRESDEN
- INSTITUTE FOR BASIC SCIENCE
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Clone-based full-length RNA-seq for early diagnosis of cancerDeveloping a novel 3D clone-based RNA-seq technology to enhance detection of rare mutations and splicing in cancer cells for improved early diagnosis and personalized treatment strategies. | ERC POC | € 150.000 | 2022 | Details |
High throughput phylogeography of tumors: how the tissue environment influences cancer evolution?This project aims to develop transcriptional phylogeography to study tumor evolution in situ at single-cell resolution, linking tumor microenvironment characteristics to sub-clonal properties. | ERC COG | € 2.000.000 | 2023 | Details |
Giant-leaps during tumorigenesis: Dissecting saltatory evolution in cancer ‘in the making’This project aims to develop an AI-driven framework to study saltatory evolution events in colorectal cancer by analyzing nuclear atypias and their role in tumorigenesis and therapy resistance. | ERC ADG | € 3.428.458 | 2024 | Details |
Integrative profiling and engineering of clonal cancer cell behaviours: from the tissue level down to the molecular scaleSpaceClones aims to elucidate clonal interactions in tumors using advanced imaging and engineering techniques to enhance cancer therapy effectiveness and predict clinical outcomes. | ERC STG | € 2.499.999 | 2024 | Details |
Clone-based full-length RNA-seq for early diagnosis of cancer
Developing a novel 3D clone-based RNA-seq technology to enhance detection of rare mutations and splicing in cancer cells for improved early diagnosis and personalized treatment strategies.
High throughput phylogeography of tumors: how the tissue environment influences cancer evolution?
This project aims to develop transcriptional phylogeography to study tumor evolution in situ at single-cell resolution, linking tumor microenvironment characteristics to sub-clonal properties.
Giant-leaps during tumorigenesis: Dissecting saltatory evolution in cancer ‘in the making’
This project aims to develop an AI-driven framework to study saltatory evolution events in colorectal cancer by analyzing nuclear atypias and their role in tumorigenesis and therapy resistance.
Integrative profiling and engineering of clonal cancer cell behaviours: from the tissue level down to the molecular scale
SpaceClones aims to elucidate clonal interactions in tumors using advanced imaging and engineering techniques to enhance cancer therapy effectiveness and predict clinical outcomes.