Integrative profiling and engineering of clonal cancer cell behaviours: from the tissue level down to the molecular scale
SpaceClones aims to elucidate clonal interactions in tumors using advanced imaging and engineering techniques to enhance cancer therapy effectiveness and predict clinical outcomes.
Projectdetails
Introduction
Clonal evolution in tumours, the process by which cancer cells expand, diversify and are selected, is a major determinant of tumour growth and response to therapy. How the co-existence of diverse cancer cell clones shapes tumour development is a fundamental question that remains open, in part because of limitations on existing experimental platforms and analytical frameworks.
Expertise and Advances
Our expertise inferring multicellular behaviours within tissue microenvironments, together with recent advances in imaging, assay automation, and cell engineering, timely place us in an excellent position to profile and engineer clonal interactions within tumours from the tissue level down to the molecular scale. This enables targeting this important question with unprecedented throughput and spatial resolution.
Objectives of SpaceClones
In SpaceClones, we aim to:
- Characterize clonal interactions in genetically engineered tumours at sub-100 nm resolution.
- Characterize clonal signatures under metabolically defined environmental conditions.
- Examine the cell state of engineered clonal spatial patterns.
Methodological Approach
To overcome a variety of challenges to understanding molecular and cellular mechanisms of clonal behaviours in tumours, I have designed a ground-breaking approach that combines:
- Highly-multiplexed imaging
- In vitro and in vivo tumour models
- Cell engineering
- Super-resolution microscopy
- Combinatorial low-volume liquid handling
- Algorithms for deconstruction of spatial patterns
Implications
Altogether, SpaceClones will exemplify how to imply causality on the emergence of clonal spatial patterns in tumours, having far-reaching implications for the study of any other multicellular system. Ultimately, a deeper understanding of clonal evolution will contribute to the design of more effective cancer therapies and tools to predict clinical outcomes.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.499.999 |
Totale projectbegroting | € 2.499.999 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Proteomic Analysis of Cell communication in TumorsThis project aims to analyze cancer proteome dynamics at single-cell resolution to understand tumor heterogeneity and improve personalized treatment for resistant metastatic cells. | ERC COG | € 2.000.000 | 2022 | Details |
A multiplexed biomimetic imaging platform for assessing single cell plasticity (Plastomics) and scoring of tumour malignancyThe PLAST_CELL project aims to develop a microfluidics-based imaging platform to quantify cancer cell plasticity, enhancing diagnosis and treatment of metastasis and therapy resistance. | EIC Pathfinder | € 2.982.792 | 2022 | Details |
Clone-based full-length RNA-seq for early diagnosis of cancerDeveloping a novel 3D clone-based RNA-seq technology to enhance detection of rare mutations and splicing in cancer cells for improved early diagnosis and personalized treatment strategies. | ERC POC | € 150.000 | 2022 | Details |
High throughput phylogeography of tumors: how the tissue environment influences cancer evolution?This project aims to develop transcriptional phylogeography to study tumor evolution in situ at single-cell resolution, linking tumor microenvironment characteristics to sub-clonal properties. | ERC COG | € 2.000.000 | 2023 | Details |
Proteomic Analysis of Cell communication in Tumors
This project aims to analyze cancer proteome dynamics at single-cell resolution to understand tumor heterogeneity and improve personalized treatment for resistant metastatic cells.
A multiplexed biomimetic imaging platform for assessing single cell plasticity (Plastomics) and scoring of tumour malignancy
The PLAST_CELL project aims to develop a microfluidics-based imaging platform to quantify cancer cell plasticity, enhancing diagnosis and treatment of metastasis and therapy resistance.
Clone-based full-length RNA-seq for early diagnosis of cancer
Developing a novel 3D clone-based RNA-seq technology to enhance detection of rare mutations and splicing in cancer cells for improved early diagnosis and personalized treatment strategies.
High throughput phylogeography of tumors: how the tissue environment influences cancer evolution?
This project aims to develop transcriptional phylogeography to study tumor evolution in situ at single-cell resolution, linking tumor microenvironment characteristics to sub-clonal properties.