Integrative profiling and engineering of clonal cancer cell behaviours: from the tissue level down to the molecular scale

SpaceClones aims to elucidate clonal interactions in tumors using advanced imaging and engineering techniques to enhance cancer therapy effectiveness and predict clinical outcomes.

Subsidie
€ 2.499.999
2024

Projectdetails

Introduction

Clonal evolution in tumours, the process by which cancer cells expand, diversify and are selected, is a major determinant of tumour growth and response to therapy. How the co-existence of diverse cancer cell clones shapes tumour development is a fundamental question that remains open, in part because of limitations on existing experimental platforms and analytical frameworks.

Expertise and Advances

Our expertise inferring multicellular behaviours within tissue microenvironments, together with recent advances in imaging, assay automation, and cell engineering, timely place us in an excellent position to profile and engineer clonal interactions within tumours from the tissue level down to the molecular scale. This enables targeting this important question with unprecedented throughput and spatial resolution.

Objectives of SpaceClones

In SpaceClones, we aim to:

  1. Characterize clonal interactions in genetically engineered tumours at sub-100 nm resolution.
  2. Characterize clonal signatures under metabolically defined environmental conditions.
  3. Examine the cell state of engineered clonal spatial patterns.

Methodological Approach

To overcome a variety of challenges to understanding molecular and cellular mechanisms of clonal behaviours in tumours, I have designed a ground-breaking approach that combines:

  • Highly-multiplexed imaging
  • In vitro and in vivo tumour models
  • Cell engineering
  • Super-resolution microscopy
  • Combinatorial low-volume liquid handling
  • Algorithms for deconstruction of spatial patterns

Implications

Altogether, SpaceClones will exemplify how to imply causality on the emergence of clonal spatial patterns in tumours, having far-reaching implications for the study of any other multicellular system. Ultimately, a deeper understanding of clonal evolution will contribute to the design of more effective cancer therapies and tools to predict clinical outcomes.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.499.999
Totale projectbegroting€ 2.499.999

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2028
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYApenvoerder

Land(en)

Spain

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Proteomic Analysis of Cell communication in Tumors

This project aims to analyze cancer proteome dynamics at single-cell resolution to understand tumor heterogeneity and improve personalized treatment for resistant metastatic cells.

€ 2.000.000
EIC Pathfinder

A multiplexed biomimetic imaging platform for assessing single cell plasticity (Plastomics) and scoring of tumour malignancy

The PLAST_CELL project aims to develop a microfluidics-based imaging platform to quantify cancer cell plasticity, enhancing diagnosis and treatment of metastasis and therapy resistance.

€ 2.982.792
ERC POC

Clone-based full-length RNA-seq for early diagnosis of cancer

Developing a novel 3D clone-based RNA-seq technology to enhance detection of rare mutations and splicing in cancer cells for improved early diagnosis and personalized treatment strategies.

€ 150.000
ERC COG

High throughput phylogeography of tumors: how the tissue environment influences cancer evolution?

This project aims to develop transcriptional phylogeography to study tumor evolution in situ at single-cell resolution, linking tumor microenvironment characteristics to sub-clonal properties.

€ 2.000.000