Vibrational Micro-robots in Viscoelastic Biological Tissues
The project aims to develop vibrational micro-robots (VIBEBOTS) for efficient propulsion and sensing in viscoelastic biological tissues, enhancing targeted drug delivery and minimally-invasive procedures.
Projectdetails
Introduction
Wireless micro-robots hold great potential for minimally-invasive medicine, since they may allow for targeted drug delivery, in vivo sensing, stimulation, and even new surgical procedures. However, the biggest hurdle for biomedical applications is the penetration of real biological media, for instance, mucus, vitreous, blood clots, and tumour tissues.
Challenges in Propulsion
Most current micro-/nano-robots can propel in water; however, the same propulsion mechanisms do not readily transfer to viscoelastic biological media. One major bottleneck is that it is not possible to exert enough force for propulsion in a system that could one day also accommodate a human.
Project Goals
The overall goal of this proposal is to develop vibrational microdevices that can actively propel and wirelessly sense in viscoelastic biological tissues. The excited mechanical vibration is coupled with the frequency-dependent fluidic rheology to:
- Increase the energy release rate
- Reduce the penetration force needed for tissue rupture
- Facilitate easier penetration of the tissues
Research Focus
We will investigate the fundamental mechanisms of propulsion at low Reynolds number in viscoelastic materials. The microrheology of the biological fluids will be measured and modelled, which will allow us to optimize the shape and gait of the micro-robot to exploit the complex rheological properties of biological tissues and generate propulsion.
Technological Advancements
The proposed work will also advance three-dimensional fabrication technologies for asymmetric micro-/nanostructures as key elements to interact with tissues to facilitate efficient locomotion.
Sensing Development
We will also develop novel sensing methods for in vivo sensing and localization of the microdevices.
Conclusion
Our research will lead to a new class of micro-robots - the VIBEBOTS that will be able to actively penetrate real tissues, and open up outstanding opportunities for useful biomedical applications.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.728 |
Totale projectbegroting | € 1.499.728 |
Tijdlijn
Startdatum | 1-1-2023 |
Einddatum | 31-12-2027 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERGpenvoerder
- UNIVERSITY OF STUTTGART
- TECHNISCHE UNIVERSITAET DRESDEN
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Engineered viscoelasticity in regenerative microenvironmentsThis project aims to develop viscoelastic hydrogels to enhance mesenchymal stem cell differentiation and promote bone regeneration, while utilizing Brillouin microscopy to monitor their properties in vivo. | ERC ADG | € 2.497.246 | 2023 | Details |
Intelligent Device and Computational Software to Control Mechanical Stress and Deformation for Biological TestingISBIOMECH aims to develop a novel intelligent system for controlling mechanical environments in biological testing, enhancing in-vitro therapies and drug discovery for various pathologies. | ERC POC | € 150.000 | 2023 | Details |
Development of an In-Vivo Brillouin Microscope (with application to Protein Aggregation-based Pathologies)This project aims to enhance Brillouin Microscopy for real-time, non-destructive assessment of viscoelastic properties in living cells, addressing key biomedical challenges. | EIC Pathfinder | € 3.333.513 | 2023 | Details |
Engineering soft microdevices for the mechanical characterization and stimulation of microtissuesThis project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments. | ERC ADG | € 3.475.660 | 2025 | Details |
Engineered viscoelasticity in regenerative microenvironments
This project aims to develop viscoelastic hydrogels to enhance mesenchymal stem cell differentiation and promote bone regeneration, while utilizing Brillouin microscopy to monitor their properties in vivo.
Intelligent Device and Computational Software to Control Mechanical Stress and Deformation for Biological Testing
ISBIOMECH aims to develop a novel intelligent system for controlling mechanical environments in biological testing, enhancing in-vitro therapies and drug discovery for various pathologies.
Development of an In-Vivo Brillouin Microscope (with application to Protein Aggregation-based Pathologies)
This project aims to enhance Brillouin Microscopy for real-time, non-destructive assessment of viscoelastic properties in living cells, addressing key biomedical challenges.
Engineering soft microdevices for the mechanical characterization and stimulation of microtissues
This project aims to advance mechanobiology by developing soft robotic micro-devices to study and manipulate 3D tissue responses, enhancing understanding of cell behavior and potential cancer treatments.