Utilizing spectroscopy to quantify Thermal transport In fLame sprEad
The UTILE project aims to enhance fire safety by using advanced laser diagnostics to measure heat flux and flame spread, improving predictive models for fire behavior in built and wild environments.
Projectdetails
Introduction
Uncontrolled fire in the built and wild environment remains a major societal issue. Climate change and an increasing elderly population suggest a worsening of fire damage within the following years.
Importance of Flame Spread Rate
The flame spread rate (Vf) is the principal quantity to assess the danger of a fire. Accurately predicting thermal transport to the unburnt material is critical to predicting the Vf. Improved quantification of the modes by which flames spread can aid in the prevention and control of nonstationary fires.
Methodology
Combined simultaneous multi-dimensional temperature distributions of the gas with the condensed-phase are required to calculate heat flux to the surface. UTILE is tailored to understand flame spread (FS) by measuring heat flux with multi-dimensional ultrafast laser diagnostics.
Experimental Setup
A canonical FS configuration (flat plate) with well-known boundary conditions and optical access will be built. The following techniques will be employed:
- Fs/ps Hybrid Rotational Coherent Anti-Stokes Raman Spectroscopy (HRCARS) for gas-phase measurements.
- Phosphor thermometry to measure the surface temperature.
- Particle Image Velocimetry (PIV) to measure the airflow boundary layer.
- Chemiluminescence (CH or OH) to locate the reacting flame front.
Novel Contributions
No fire studies have used simultaneous multi-dimensional temperature measurements of the gas and condensed-phase to calculate heat flux.
UTILE is not limited to quantifying heat flux but is a platform to advance the state-of-the-art in ultrafast laser diagnostics. Pushing limitations in 2D HRCARS and ultra-broadband HCARS will decrease experimental time and increase species sensitivity to the opposed and concurrent FS studies.
Future Directions
Using multi-photon excitation for phosphor thermometry has the potential to improve multi-dimensional surface thermometry. Combining a modern experimental setup with tailored laser diagnostics will provide novel data quantifying heat flux leading to FS.
Conclusion
Improving Vf models will benefit fire safety and refine the predictability of Computational Fluid Dynamics (CFDs).
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.924 |
Totale projectbegroting | € 1.499.924 |
Tijdlijn
Startdatum | 1-1-2025 |
Einddatum | 31-12-2029 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- UNIVERSITAT POLITECNICA DE CATALUNYApenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Wildfires and Climate Change: Physics-Based Modelling of Fire Spread in a Changing WorldThis project aims to develop a fundamental physical model for predicting uncontrolled fire spread by integrating combustion engineering and environmental science across various scales and conditions. | ERC Starting... | € 1.480.466 | 2025 | Details |
Fundamentals of Combustion Safety Scenarios for HydrogenSAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications. | ERC Advanced... | € 2.498.191 | 2025 | Details |
POROus media: Life and dEath of their wAves and FlamesPOROLEAF aims to explore the synergy between turbulent combustion and porous media to enhance understanding and design of cleaner, stable combustion processes. | ERC Starting... | € 1.499.942 | 2024 | Details |
Laser-Based Infrared Vibrational Electric-Field FingerprintingThe LIVE project aims to enhance IR spectroscopy using femtosecond lasers for non-destructive, label-free analysis of biological samples, improving sensitivity and applicability in biomedical settings. | ERC Consolid... | € 1.881.875 | 2023 | Details |
Imaging the local flow of heat and phononsThis project aims to visualize the breakdown of Fourier's law in heat propagation using a SQUID-on-tip thermometer to develop a new model for nanoscale heat transport in materials. | ERC Starting... | € 1.499.990 | 2025 | Details |
Wildfires and Climate Change: Physics-Based Modelling of Fire Spread in a Changing World
This project aims to develop a fundamental physical model for predicting uncontrolled fire spread by integrating combustion engineering and environmental science across various scales and conditions.
Fundamentals of Combustion Safety Scenarios for Hydrogen
SAFE-H2 aims to enhance hydrogen combustion safety through a combination of theory, experiments, and simulations, providing validated models for regulatory frameworks and industry applications.
POROus media: Life and dEath of their wAves and Flames
POROLEAF aims to explore the synergy between turbulent combustion and porous media to enhance understanding and design of cleaner, stable combustion processes.
Laser-Based Infrared Vibrational Electric-Field Fingerprinting
The LIVE project aims to enhance IR spectroscopy using femtosecond lasers for non-destructive, label-free analysis of biological samples, improving sensitivity and applicability in biomedical settings.
Imaging the local flow of heat and phonons
This project aims to visualize the breakdown of Fourier's law in heat propagation using a SQUID-on-tip thermometer to develop a new model for nanoscale heat transport in materials.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Wireless, Low-Cost, Low-Power Integrated Sensor PhotonicsWILLOWISP aims to develop a compact, cost-effective methane gas analyser using innovative photonic chips, enhancing leak detection in fossil fuel infrastructure. | EIC Transition | € 2.495.031 | 2025 | Details |
Haalbaarheid dynamisch verbrandingsmodel voor waterstofHet project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren. | Mkb-innovati... | € 20.000 | 2023 | Details |
PFAS Combustion AnalyzerTSHR onderzoekt de haalbaarheid van een compacte combustion analyzer voor snelle en kostenefficiënte meting van PFAS, gericht op gebruikers zoals het RIVM. | Mkb-innovati... | € 20.000 | 2023 | Details |
Mobile Full-Range Compact Flame Point Analyzer (CFPA)Orbis BV en Adelmann ontwikkelen de CFPA, een mobiel vlampunttestapparaat dat veiligheid waarborgt en snel testresultaten levert voor de petrochemische industrie. | Mkb-innovati... | € 129.765 | 2020 | Details |
ulTRafast hOlograPHic FTIR microscopYTROPHY combines advanced microscopy techniques to enable rapid, high-resolution imaging of tumor biopsies for precise diagnosis and tailored cancer therapies, enhancing patient outcomes. | EIC Pathfinder | € 1.904.544 | 2022 | Details |
Wireless, Low-Cost, Low-Power Integrated Sensor Photonics
WILLOWISP aims to develop a compact, cost-effective methane gas analyser using innovative photonic chips, enhancing leak detection in fossil fuel infrastructure.
Haalbaarheid dynamisch verbrandingsmodel voor waterstof
Het project onderzoekt de haalbaarheid van een turbulent verbrandingsmodel voor waterstof/aardgas-mengsels om ultra-lage NOx-emissies te realiseren en de verbrandingseigenschappen te simuleren.
PFAS Combustion Analyzer
TSHR onderzoekt de haalbaarheid van een compacte combustion analyzer voor snelle en kostenefficiënte meting van PFAS, gericht op gebruikers zoals het RIVM.
Mobile Full-Range Compact Flame Point Analyzer (CFPA)
Orbis BV en Adelmann ontwikkelen de CFPA, een mobiel vlampunttestapparaat dat veiligheid waarborgt en snel testresultaten levert voor de petrochemische industrie.
ulTRafast hOlograPHic FTIR microscopY
TROPHY combines advanced microscopy techniques to enable rapid, high-resolution imaging of tumor biopsies for precise diagnosis and tailored cancer therapies, enhancing patient outcomes.