Using deep neural networks to understand functional specialization in the human visual cortex
This project aims to uncover the origins of functional specialization in the brain's visual pathway by integrating computational modeling, naturalistic behavior sampling, and neuroimaging.
Projectdetails
Introduction
Over the last few decades, neuroscientists have identified multiple brain regions that perform distinct, often highly specialized functions such as processing faces, understanding language, and even thinking about what other people are thinking. Despite our increased understanding of the computations performed in these regions, the precise causes and origins of functional specialization in the brain are still a mystery and not accessible to direct experimental approaches.
Proposed Methodology
Here, we propose to combine cutting-edge computational modelling, large-scale sampling of naturalistic behaviour, and human neuroimaging to overcome these limitations. Focusing on visual perception, we will exploit the latest advances in artificial neural networks to probe three critical aspects of functional specialization in the ventral visual pathway:
-
Characterization of Visual Categories
By training networks on natural and artificial visual categories and identifying which features result in functional specialization, we will characterize what it is about a visual category that leads to functional specialization. -
Influence of Visual Experience
We will leverage large-scale egocentric datasets of infant and adult visual input to test how visual experience and natural input statistics shape functional specialization during development. -
Understanding Neural Specialization
We will ask why certain neural features become specialized for high-level visual categories in the human visual cortex in the first place.
Critically, for each of these aspects, we will close the loop and directly test and validate its predictions in the human brain.
Significance of the Project
Our project will shed light on functional specialization from a new angle – by relating functional specialization to the computational constraints of performing tasks in the real world. Using this novel approach, our project tackles some of the most fundamental questions about the functional organization of the human mind and brain – the what, how, and why of functional specialization.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.494.750 |
Totale projectbegroting | € 1.494.750 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- JUSTUS-LIEBIG-UNIVERSITAET GIESSENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
A perturbative approach to model retinal processing of natural scenesThis project aims to develop realistic deep network models to understand retinal processing of natural scenes by mapping model components to retinal cell types and probing selectivity to stimuli perturbations. | ERC COG | € 1.998.280 | 2022 | Details |
A theory and model of the neural transformations mediating human object perceptionTRANSFORM aims to develop a predictive model and theory of neural transformations for object perception by integrating brain imaging, mathematical analysis, and computational modeling. | ERC COG | € 2.291.855 | 2025 | Details |
A perturbative approach to model retinal processing of natural scenes
This project aims to develop realistic deep network models to understand retinal processing of natural scenes by mapping model components to retinal cell types and probing selectivity to stimuli perturbations.
A theory and model of the neural transformations mediating human object perception
TRANSFORM aims to develop a predictive model and theory of neural transformations for object perception by integrating brain imaging, mathematical analysis, and computational modeling.