A theory and model of the neural transformations mediating human object perception
TRANSFORM aims to develop a predictive model and theory of neural transformations for object perception by integrating brain imaging, mathematical analysis, and computational modeling.
Projectdetails
Introduction
In the blink of an eye, our brain rapidly transforms the photons hitting our retina into a rich and detailed percept of the world as consisting of objects. By knowing what the objects are, and in what configuration these objects appear to us, we understand the meaning of the visual world around us. Yet, despite intense research, how neural transformations enable rich object perception remains unclear. The overall goal of the research program TRANSFORM is to provide an explanatory theory of the neural transformations mediating rich object perception, and a predictive quantitative model embodying this theory.
Research Goals
Towards this goal, TRANSFORM will provide three strong and novel constraints for theory and model building:
- Neural Constraint: TRANSFORM will reveal the neural transformations underlying visual object perception in the mature brain.
- Behavioural Constraint: It will unravel the link between the neural transformation and object-related behaviour.
- Developmental Constraint: It will clarify the developmental trajectory of neural transformations underlying visual object perception from infancy into adulthood.
Methodology
For maximal efficiency and power in unified theory formation and model building, TRANSFORM will employ an integrated, interdisciplinary research strategy that combines:
- Large-scale non-invasive brain imaging to capture neural transformations in space and time with unprecedented depth.
- Advanced mathematical analysis to reveal the geometry of the transformations.
- Computational modelling using deep neural networks to build a predictive, quantitative model of those transformations.
Conclusion
Through this orchestrated effort, TRANSFORM will provide the empirical pieces of evidence for a new theory and model of the neural transformations mediating our rich everyday experience of object vision and change the way we think about and investigate human vision and cognition.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.291.855 |
Totale projectbegroting | € 2.291.855 |
Tijdlijn
Startdatum | 1-4-2025 |
Einddatum | 31-3-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- FREIE UNIVERSITAET BERLINpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
It's about time: Towards a dynamic account of natural vision.TIME aims to revolutionize vision research by integrating semantic understanding and active information sampling through advanced brain imaging and bio-inspired deep learning, enhancing insights into visual cognition. | ERC STG | € 1.499.455 | 2022 | Details |
Uncovering the core dimensions of visual object representationsCOREDIM aims to identify the core dimensions of visual object representations using neuroimaging, behavioral data, and AI, enhancing our understanding of visual processing in the brain. | ERC STG | € 1.500.000 | 2022 | Details |
Personalized priors: How individual differences in internal models explain idiosyncrasies in natural visionThis project aims to uncover the contents of individual internal models of natural vision through creative drawing methods, enhancing understanding of scene perception and its neural underpinnings. | ERC STG | € 1.484.625 | 2023 | Details |
Making sense of the senses: Causal Inference in a complex dynamic multisensory worldThis project aims to uncover how the brain approximates causal inference in complex multisensory environments using interdisciplinary methods, potentially informing AI and addressing perceptual challenges in clinical populations. | ERC ADG | € 2.499.527 | 2024 | Details |
It's about time: Towards a dynamic account of natural vision.
TIME aims to revolutionize vision research by integrating semantic understanding and active information sampling through advanced brain imaging and bio-inspired deep learning, enhancing insights into visual cognition.
Uncovering the core dimensions of visual object representations
COREDIM aims to identify the core dimensions of visual object representations using neuroimaging, behavioral data, and AI, enhancing our understanding of visual processing in the brain.
Personalized priors: How individual differences in internal models explain idiosyncrasies in natural vision
This project aims to uncover the contents of individual internal models of natural vision through creative drawing methods, enhancing understanding of scene perception and its neural underpinnings.
Making sense of the senses: Causal Inference in a complex dynamic multisensory world
This project aims to uncover how the brain approximates causal inference in complex multisensory environments using interdisciplinary methods, potentially informing AI and addressing perceptual challenges in clinical populations.