Twisted Ions – A novel tool for quantum science

TWISTION aims to demonstrate the first twisted ion beam to explore the effects of external twists on ionic internal structures, advancing quantum science at the intersection of optics and atomic physics.

Subsidie
€ 1.499.905
2022

Projectdetails

Introduction

One of the most fundamental principles of quantum physics, the so-called wave-particle dualism of quantum objects, is at the heart of a recently developed research field: twisted matter waves. Similar to their well-established photonic counterparts, coherent beams of massive particles can exhibit a screw-like phase front, which causes an orbital angular momentum.

Unique Features of Twisted Matter Waves

Contrary to photons, however, massive quantum systems can be charged, which results in an additional magnetic moment related to the beams’ twist. So far, this unique feature has only been studied using electrons, with immediate impact on fundamental studies and applications in quantum-enhanced microscopy schemes as a magnetic nano-sensor.

Focus of TWISTION

TWISTION will harness these latest developments but redirects the focus on coherent matter waves of ions. Not only are ionic systems heavier than electrons, but importantly they have an internal structure due to bound electrons. This feature, exclusive to composite systems, makes twisted ions especially intriguing as it opens the door to yet unexplored quantum mechanical effects on the internal states, e.g. through a magnetic interaction caused by the magnetic moment induced by the external twist.

Objectives of TWISTION

With these promising prospects in mind, TWISTION will set out to demonstrate the first twisted ion beam, thereby also delivering the first unambiguous result of a coherent ionic matter wave. More importantly, TWISTION intends to explore and reveal in theory as well as in an experiment the effect of an external twist on the internal structure, thereby establishing twisted ions as a novel tool for quantum science.

Experimental Setup

In turn, TWISTION will deliver the first experiment that is exclusively built for the investigation of structured matter waves, whose setup can be fully adjusted to any task-specific requirement for both electrons and ions. As such, TWISTION aims at redefining the state-of-the-art of this novel branch of quantum science at the interface between optics and atom physics.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.499.905
Totale projectbegroting€ 1.499.905

Tijdlijn

Startdatum1-9-2022
Einddatum31-8-2027
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • TAMPEREEN KORKEAKOULUSAATIO SRpenvoerder

Land(en)

Finland

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

Twistoptics: Manipulating Light-Matter Interactions at the Nanoscale with Twisted van der Waals Materials

This project aims to develop Twistoptics by manipulating nanolight in twisted van der Waals materials to create advanced nanodevices for enhanced light-matter interactions and quantum applications.

€ 1.999.500
ERC ADG

Correlated Ion elecTRon fOr Nanoscience

The CITRON project aims to enhance focused ion and electron beam technologies for precise nanostructuring and doping through innovative prototypes utilizing monochromaticity and real-time particle control.

€ 3.325.441
ERC ADG

The Quantum Twisting Microscope - revolutionizing quantum matter imaging

The Quantum Twisting Microscope (QTM) aims to revolutionize quantum material studies by enabling local quantum interference measurements and cryogenic assembly with unprecedented resolution and control.

€ 3.344.995
ERC COG

Exotic quantum states by locally-broken inversion symmetry in extreme conditions.

The Ixtreme project aims to explore locally broken inversion symmetry in materials to uncover novel quantum states and advance applications in topological quantum computing and superconductivity.

€ 2.731.250