Twisted Ions – A novel tool for quantum science
TWISTION aims to demonstrate the first twisted ion beam to explore the effects of external twists on ionic internal structures, advancing quantum science at the intersection of optics and atomic physics.
Projectdetails
Introduction
One of the most fundamental principles of quantum physics, the so-called wave-particle dualism of quantum objects, is at the heart of a recently developed research field: twisted matter waves. Similar to their well-established photonic counterparts, coherent beams of massive particles can exhibit a screw-like phase front, which causes an orbital angular momentum.
Unique Features of Twisted Matter Waves
Contrary to photons, however, massive quantum systems can be charged, which results in an additional magnetic moment related to the beams’ twist. So far, this unique feature has only been studied using electrons, with immediate impact on fundamental studies and applications in quantum-enhanced microscopy schemes as a magnetic nano-sensor.
Focus of TWISTION
TWISTION will harness these latest developments but redirects the focus on coherent matter waves of ions. Not only are ionic systems heavier than electrons, but importantly they have an internal structure due to bound electrons. This feature, exclusive to composite systems, makes twisted ions especially intriguing as it opens the door to yet unexplored quantum mechanical effects on the internal states, e.g. through a magnetic interaction caused by the magnetic moment induced by the external twist.
Objectives of TWISTION
With these promising prospects in mind, TWISTION will set out to demonstrate the first twisted ion beam, thereby also delivering the first unambiguous result of a coherent ionic matter wave. More importantly, TWISTION intends to explore and reveal in theory as well as in an experiment the effect of an external twist on the internal structure, thereby establishing twisted ions as a novel tool for quantum science.
Experimental Setup
In turn, TWISTION will deliver the first experiment that is exclusively built for the investigation of structured matter waves, whose setup can be fully adjusted to any task-specific requirement for both electrons and ions. As such, TWISTION aims at redefining the state-of-the-art of this novel branch of quantum science at the interface between optics and atom physics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.499.905 |
Totale projectbegroting | € 1.499.905 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2027 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- TAMPEREEN KORKEAKOULUSAATIO SRpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Twistoptics: Manipulating Light-Matter Interactions at the Nanoscale with Twisted van der Waals MaterialsThis project aims to develop Twistoptics by manipulating nanolight in twisted van der Waals materials to create advanced nanodevices for enhanced light-matter interactions and quantum applications. | ERC COG | € 1.999.500 | 2022 | Details |
Correlated Ion elecTRon fOr NanoscienceThe CITRON project aims to enhance focused ion and electron beam technologies for precise nanostructuring and doping through innovative prototypes utilizing monochromaticity and real-time particle control. | ERC ADG | € 3.325.441 | 2023 | Details |
The Quantum Twisting Microscope - revolutionizing quantum matter imagingThe Quantum Twisting Microscope (QTM) aims to revolutionize quantum material studies by enabling local quantum interference measurements and cryogenic assembly with unprecedented resolution and control. | ERC ADG | € 3.344.995 | 2023 | Details |
Exotic quantum states by locally-broken inversion symmetry in extreme conditions.The Ixtreme project aims to explore locally broken inversion symmetry in materials to uncover novel quantum states and advance applications in topological quantum computing and superconductivity. | ERC COG | € 2.731.250 | 2024 | Details |
Twistoptics: Manipulating Light-Matter Interactions at the Nanoscale with Twisted van der Waals Materials
This project aims to develop Twistoptics by manipulating nanolight in twisted van der Waals materials to create advanced nanodevices for enhanced light-matter interactions and quantum applications.
Correlated Ion elecTRon fOr Nanoscience
The CITRON project aims to enhance focused ion and electron beam technologies for precise nanostructuring and doping through innovative prototypes utilizing monochromaticity and real-time particle control.
The Quantum Twisting Microscope - revolutionizing quantum matter imaging
The Quantum Twisting Microscope (QTM) aims to revolutionize quantum material studies by enabling local quantum interference measurements and cryogenic assembly with unprecedented resolution and control.
Exotic quantum states by locally-broken inversion symmetry in extreme conditions.
The Ixtreme project aims to explore locally broken inversion symmetry in materials to uncover novel quantum states and advance applications in topological quantum computing and superconductivity.