The Quantum Twisting Microscope - revolutionizing quantum matter imaging
The Quantum Twisting Microscope (QTM) aims to revolutionize quantum material studies by enabling local quantum interference measurements and cryogenic assembly with unprecedented resolution and control.
Projectdetails
Introduction
In this work, we propose to build a radically new type of scanning probe microscope – the Quantum Twisting Microscope (QTM) – that will be the first capable of performing local quantum interference measurements at a twistable interface between two quantum materials.
Concept and Design
The concept, already established in preliminary experiments, is based on a unique tip made of an atomically-thin two-dimensional material. This tip allows electrons to coherently tunnel into a sample at many locations at once, making it a scanning electronic interferometer.
Functionality
With an extra twist degree of freedom, our microscope becomes a momentum-resolving local probe, providing powerful new ways to study the energy dispersions of interacting electrons in quantum materials.
Additional Modalities
The same microscope, working in a second modality, will be the first-of-its-kind platform for cryogenic assembly of interfaces between various van der Waals materials with full in-situ control over their twist angle.
In a third modality, the QTM will make a dramatic jump, by two orders of magnitude, in the spatial resolution of electrostatic imaging. This will open a new world of interacting electron phenomena that were so far inaccessible to direct visualization.
Preliminary Results
We have recently built a preliminary room temperature version of this microscope, and already observed striking quantum interference and promising results on all three fronts.
Future Prospects
By taking this new microscope to cryogenic temperatures, we expect to make multiple discoveries on a variety of fundamental questions in interacting quantum matter.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 3.344.995 |
Totale projectbegroting | € 3.344.995 |
Tijdlijn
Startdatum | 1-4-2023 |
Einddatum | 31-3-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- WEIZMANN INSTITUTE OF SCIENCEpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Enhanced quantum resilience through twistsThis project aims to develop robust quantum states through twisted coupled quantum systems, enhancing noise protection and enabling advancements in quantum information processing and technology. | ERC STG | € 1.458.688 | 2023 | Details |
Structuring Quantum Light for MicroscopySQiMic aims to revolutionize optical microscopy by integrating quantum imaging and light structuring to enhance imaging of unlabeled biological specimens with improved resolution and contrast. | ERC STG | € 1.499.365 | 2022 | Details |
Twisted Ions – A novel tool for quantum scienceTWISTION aims to demonstrate the first twisted ion beam to explore the effects of external twists on ionic internal structures, advancing quantum science at the intersection of optics and atomic physics. | ERC STG | € 1.499.905 | 2022 | Details |
Quantum Interactions in Photon-Induced Nearfield Electron MicroscopyThis project aims to develop ultrafast free-electron interferometry to measure quantum properties of light and matter, enabling groundbreaking insights into quantum correlations and dynamics. | ERC COG | € 2.500.000 | 2025 | Details |
Enhanced quantum resilience through twists
This project aims to develop robust quantum states through twisted coupled quantum systems, enhancing noise protection and enabling advancements in quantum information processing and technology.
Structuring Quantum Light for Microscopy
SQiMic aims to revolutionize optical microscopy by integrating quantum imaging and light structuring to enhance imaging of unlabeled biological specimens with improved resolution and contrast.
Twisted Ions – A novel tool for quantum science
TWISTION aims to demonstrate the first twisted ion beam to explore the effects of external twists on ionic internal structures, advancing quantum science at the intersection of optics and atomic physics.
Quantum Interactions in Photon-Induced Nearfield Electron Microscopy
This project aims to develop ultrafast free-electron interferometry to measure quantum properties of light and matter, enabling groundbreaking insights into quantum correlations and dynamics.