Total Optical Coherence Characterization for Automated Tumor Analysis
Developing novel optical imaging systems to non-destructively characterize glioblastoma tissue and identify tumor spheroids that accurately mimic original tumors for personalized treatment testing.
Projectdetails
Introduction
Drug resistance, whether intrinsic or acquired during the course of treatment, is the primary cause of cancer treatment failure. Resistance is a complex and highly personalized problem, depending on tumor-specific, genetic, and other factors, but certain cancers are particularly difficult to treat.
Glioblastoma
In particular, the most common and deadliest type of cancer originating in the brain, glioblastoma (GBM), is aggressive and highly resistant to treatment. Due to the complex nature of GBM, advanced methods for screening personalized treatment strategies are critically needed to improve patient outcomes.
Cell Spheroids
Cell spheroids are 3D tissue cultures that have proven to be a more accurate model of tumor tissue for therapeutic testing. However, they are sensitive to their growth and preparation conditions. Variability in spheroid properties may affect the results of therapeutic testing, so a method of identifying spheroids with properties that match the original tissue is needed.
Proposed Solution
In order to combat GBM and other drug-resistant cancers, we propose the development of two novel optical imaging systems. These systems will perform non-destructive characterization of tumor tissue and live monitoring of in vitro drug testing on tumor spheroids.
Imaging System Design
Both imaging systems use a unique design to scan the tissue samples at different angles to quantify a wide range of optical properties within the tissue with 3D micron scale resolution. This approach integrates several different optical coherence tomography-based methods and addresses their weaknesses to create a unique platform for comprehensive measurements of optical properties.
Application
This platform will be used to scan the original tumor tissue and the resulting tumor spheroids to identify which spheroids will most reliably mimic the original tumor tissue for testing different therapeutic interventions.
Conclusion
This approach has the potential to advance the field of personalized medicine and enable more rapid and reliable development of cancer therapies.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.494.125 |
Totale projectbegroting | € 1.494.125 |
Tijdlijn
Startdatum | 1-6-2025 |
Einddatum | 31-5-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- MEDIZINISCHE UNIVERSITAET WIENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Deciphering and targeting cellular states in glioblastomaThis project aims to explore and target the cellular heterogeneity in glioblastoma by characterizing common and novel cellular states through advanced sequencing and treatment strategies. | ERC COG | € 2.000.000 | 2022 | Details |
Tumor recurrence and therapeutic resistance: exploring and exploiting the post-radiotherapy brain microenvironment for therapeutic opportunities in malignant brain tumorsThis project aims to target the irradiated microenvironment of recurrent glioblastoma by integrating advanced sequencing methods and high-throughput screening to discover novel therapeutic strategies. | ERC COG | € 1.999.444 | 2022 | Details |
A Real-time imaging and classification system for low-grade glioma detection during brain surgeryThis project aims to develop a real-time imaging tool for neurosurgeons to accurately identify low-grade glioma tissue during surgery, enhancing tumor removal and improving patient outcomes. | ERC POC | € 150.000 | 2022 | Details |
Deciphering Cancer Heterogeneity and Drug resistance using Single-Clone Genomic and Epigenomic LandscapesThis project aims to develop innovative single-cell technologies to analyze tumor subclones, enhancing understanding of drug resistance and identifying new therapeutic targets in brain cancers. | ERC COG | € 2.000.000 | 2023 | Details |
Deciphering and targeting cellular states in glioblastoma
This project aims to explore and target the cellular heterogeneity in glioblastoma by characterizing common and novel cellular states through advanced sequencing and treatment strategies.
Tumor recurrence and therapeutic resistance: exploring and exploiting the post-radiotherapy brain microenvironment for therapeutic opportunities in malignant brain tumors
This project aims to target the irradiated microenvironment of recurrent glioblastoma by integrating advanced sequencing methods and high-throughput screening to discover novel therapeutic strategies.
A Real-time imaging and classification system for low-grade glioma detection during brain surgery
This project aims to develop a real-time imaging tool for neurosurgeons to accurately identify low-grade glioma tissue during surgery, enhancing tumor removal and improving patient outcomes.
Deciphering Cancer Heterogeneity and Drug resistance using Single-Clone Genomic and Epigenomic Landscapes
This project aims to develop innovative single-cell technologies to analyze tumor subclones, enhancing understanding of drug resistance and identifying new therapeutic targets in brain cancers.