Deciphering Cancer Heterogeneity and Drug resistance using Single-Clone Genomic and Epigenomic Landscapes
This project aims to develop innovative single-cell technologies to analyze tumor subclones, enhancing understanding of drug resistance and identifying new therapeutic targets in brain cancers.
Projectdetails
Introduction
To comprehend the characteristics, phylogenetic relationships, and drug resistance of tumor subclones, measurements must be performed at single-cell or single-clone resolution.
Aims of the Project
Aim 1 and Aim 2
Aims 1 and 2 aim to create cost-effective and reliable single-cell drop technologies for capturing full-length RNA (Scfl-RNA-Seq) and enhancers at the DNA level (ChromOpen).
- It is noteworthy that Scfl-RNA-Seq also captures non-coding and non-polyadenylated RNAs besides coding mRNA.
- ChromOpen also offers better capturing of functional enhancers and higher sensitivity compared to the conventional technology.
Aim 3
The ultimate goal of Aim 3 is to create the first technology that can capture both full-length RNA and enhancers from the same cell (Multi-Omics).
- To increase sensitivity and coverage, Multi-Omics will be combined with a 3D-culturing system (3Dclone) that facilitates the growth of primary cancer cells into small clones.
- The single-clone based Multi-Omics maps will:
- Increase the discovery rate of genetic somatic diversity, including non-coding regions.
- Reveal connections between gene expression and mutated loci.
- Display a wider range of functional state associations between cells.
Aim 4
In Aim 4, using our innovative mapping technologies, we will investigate two brain tumors:
- Non-Small Cell Lung Cancer that has spread to the brain.
- Glioblastoma primary cells.
Both of these cancers have limited treatment options and poor outcomes due to drug resistance.
Expected Outcomes
Based on temporal drug treatment experiments and advanced mapping technologies, this data will improve our understanding of somatic driver mutations and cellular diversity in the context of resistance, and ultimately, lead to the identification of new therapeutic targets.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-12-2023 |
Einddatum | 30-11-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- THE HEBREW UNIVERSITY OF JERUSALEMpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Clone-based full-length RNA-seq for early diagnosis of cancerDeveloping a novel 3D clone-based RNA-seq technology to enhance detection of rare mutations and splicing in cancer cells for improved early diagnosis and personalized treatment strategies. | ERC POC | € 150.000 | 2022 | Details |
Exposing hidden targets of drug resistance in cancer by mapping the epitranscriptome at single-cell resolutionThis project aims to develop a method for single-cell m6A mapping in breast cancer to uncover novel drug resistance targets and improve therapeutic strategies against chemoresistance. | ERC STG | € 1.496.578 | 2024 | Details |
Integrative profiling and engineering of clonal cancer cell behaviours: from the tissue level down to the molecular scaleSpaceClones aims to elucidate clonal interactions in tumors using advanced imaging and engineering techniques to enhance cancer therapy effectiveness and predict clinical outcomes. | ERC STG | € 2.499.999 | 2024 | Details |
Single-Clone Multi-omics Sequencing for Cancer DiagnosisDeveloping MultiCloneSeq, a cost-effective single-cell multi-omics sequencing tool, to enhance cancer diagnosis by profiling genetic mutations and RNA expression simultaneously. | ERC POC | € 150.000 | 2023 | Details |
Clone-based full-length RNA-seq for early diagnosis of cancer
Developing a novel 3D clone-based RNA-seq technology to enhance detection of rare mutations and splicing in cancer cells for improved early diagnosis and personalized treatment strategies.
Exposing hidden targets of drug resistance in cancer by mapping the epitranscriptome at single-cell resolution
This project aims to develop a method for single-cell m6A mapping in breast cancer to uncover novel drug resistance targets and improve therapeutic strategies against chemoresistance.
Integrative profiling and engineering of clonal cancer cell behaviours: from the tissue level down to the molecular scale
SpaceClones aims to elucidate clonal interactions in tumors using advanced imaging and engineering techniques to enhance cancer therapy effectiveness and predict clinical outcomes.
Single-Clone Multi-omics Sequencing for Cancer Diagnosis
Developing MultiCloneSeq, a cost-effective single-cell multi-omics sequencing tool, to enhance cancer diagnosis by profiling genetic mutations and RNA expression simultaneously.