Temporal dependence of enhancer function

This project aims to uncover how the timing of enhancer-promoter interactions influences gene activation during vertebrate development, utilizing advanced genomic and single-cell techniques.

Subsidie
€ 1.500.000
2024

Projectdetails

Introduction

During vertebrate development, genes are regulated by distal regulatory elements, presumably via physical contacts between enhancers and transcription start sites. Alterations in enhancer sequences and/or their interactions with gene promoters can perturb gene expression, leading to developmental disorders and cancers, which argues for their pivotal role in transcription.

Enhancer-Promoter Interactions

Conversely, enhancer-promoter contacts can also be uncoupled from gene activation during developmental transitions and in single cells, where they are highly heterogeneous. Thus, the relationship between enhancer-promoter interactions and transcription is frequently indirect, and the mechanisms that dictate when promoter-enhancer contacts can result in gene expression differences remain unknown.

The core hypothesis of this proposal is that it is the timing of promoter-enhancer communication that instructs gene activation.

Aim 1: Timing of Enhancer-Promoter Interactions

Aim 1 will examine whether and how the precise timing of enhancer-promoter interactions contributes to transcription. My group will determine which molecular mechanisms during transcriptional activation are regulated by enhancers contacting their target genes at different time points during embryonic stem cell differentiation.

Aim 2: Enhancer-Promoter Contacts in Single Cells

Aim 2 will investigate how present and preceding enhancer-promoter contacts relate to transcriptional activity and transcription factor binding in single cells. My group will develop a genomic approach to trace the memory of preceding interactions at gene regulatory elements, thus adding a novel temporal dimension to current single-cell methods.

Research Methodology

By longitudinally combining cutting-edge genomic, single-cell, and activity perturbation assays, my group will uncover how genes integrate regulatory inputs from several enhancers and assess how the timing of genome folding mechanistically contributes to this process.

Conclusion

This research plan will newly elucidate temporality as a powerful feature that shapes the regulatory potential of enhancers and promoters.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.500.000
Totale projectbegroting€ 1.500.000

Tijdlijn

Startdatum1-6-2024
Einddatum31-5-2029
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERGpenvoerder

Land(en)

Germany

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC COG

The impact of 3D regulatory landscapes on the evolution of developmental programs

The 3D-REVOLUTION project aims to explore how changes in 3D regulatory landscapes influence gonadal sex determination and evolutionary gene regulation using advanced genomic techniques.

€ 1.998.217
ERC SyG

Transcription in 4D: the dynamic interplay between chromatin architecture and gene expression in developing pseudo-embryos

This project aims to integrate multi-scale dynamics of gene regulation during mammalian embryogenesis using advanced imaging and modeling techniques to enhance understanding of chromatin organization and transcriptional activity.

€ 9.546.410