Temporal dependence of enhancer function
This project aims to uncover how the timing of enhancer-promoter interactions influences gene activation during vertebrate development, utilizing advanced genomic and single-cell techniques.
Projectdetails
Introduction
During vertebrate development, genes are regulated by distal regulatory elements, presumably via physical contacts between enhancers and transcription start sites. Alterations in enhancer sequences and/or their interactions with gene promoters can perturb gene expression, leading to developmental disorders and cancers, which argues for their pivotal role in transcription.
Enhancer-Promoter Interactions
Conversely, enhancer-promoter contacts can also be uncoupled from gene activation during developmental transitions and in single cells, where they are highly heterogeneous. Thus, the relationship between enhancer-promoter interactions and transcription is frequently indirect, and the mechanisms that dictate when promoter-enhancer contacts can result in gene expression differences remain unknown.
The core hypothesis of this proposal is that it is the timing of promoter-enhancer communication that instructs gene activation.
Aim 1: Timing of Enhancer-Promoter Interactions
Aim 1 will examine whether and how the precise timing of enhancer-promoter interactions contributes to transcription. My group will determine which molecular mechanisms during transcriptional activation are regulated by enhancers contacting their target genes at different time points during embryonic stem cell differentiation.
Aim 2: Enhancer-Promoter Contacts in Single Cells
Aim 2 will investigate how present and preceding enhancer-promoter contacts relate to transcriptional activity and transcription factor binding in single cells. My group will develop a genomic approach to trace the memory of preceding interactions at gene regulatory elements, thus adding a novel temporal dimension to current single-cell methods.
Research Methodology
By longitudinally combining cutting-edge genomic, single-cell, and activity perturbation assays, my group will uncover how genes integrate regulatory inputs from several enhancers and assess how the timing of genome folding mechanistically contributes to this process.
Conclusion
This research plan will newly elucidate temporality as a powerful feature that shapes the regulatory potential of enhancers and promoters.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-6-2024 |
Einddatum | 31-5-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERGpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
The impact of 3D regulatory landscapes on the evolution of developmental programsThe 3D-REVOLUTION project aims to explore how changes in 3D regulatory landscapes influence gonadal sex determination and evolutionary gene regulation using advanced genomic techniques. | ERC COG | € 1.998.217 | 2023 | Details |
Transcription in 4D: the dynamic interplay between chromatin architecture and gene expression in developing pseudo-embryosThis project aims to integrate multi-scale dynamics of gene regulation during mammalian embryogenesis using advanced imaging and modeling techniques to enhance understanding of chromatin organization and transcriptional activity. | ERC SyG | € 9.546.410 | 2024 | Details |
The impact of 3D regulatory landscapes on the evolution of developmental programs
The 3D-REVOLUTION project aims to explore how changes in 3D regulatory landscapes influence gonadal sex determination and evolutionary gene regulation using advanced genomic techniques.
Transcription in 4D: the dynamic interplay between chromatin architecture and gene expression in developing pseudo-embryos
This project aims to integrate multi-scale dynamics of gene regulation during mammalian embryogenesis using advanced imaging and modeling techniques to enhance understanding of chromatin organization and transcriptional activity.