The impact of 3D regulatory landscapes on the evolution of developmental programs
The 3D-REVOLUTION project aims to explore how changes in 3D regulatory landscapes influence gonadal sex determination and evolutionary gene regulation using advanced genomic techniques.
Projectdetails
Introduction
Vertebrate genomes are organized in 3D regulatory landscapes that control pleiotropic gene expression. Within them, transcription emerges from a precise interplay between genes, regulatory elements, and 3D chromatin organization. We and others have shown how mutations in these regulatory layers can modulate phenotypes. However, how 3D regulatory landscapes shape the evolutionary history of developmental programs is still largely unexplored.
Limitations in Current Knowledge
Our limited capability to read, interpret, and modify genomes has constrained our knowledge on how gene regulation evolves. However, recent advances in long-range sequencing, single-cell, chromatin interaction, and genome editing methods offer novel tools to link genomic variation and phenotypes.
Research Objectives
Here, I will combine these methods to investigate how changes in 3D regulatory landscapes contribute to refine the function of developmental programs. As a testbed, I will study gonadal sex determination, an essential process for species perpetuation but characterized by remarkable evolutionary plasticity.
Methodology
-
Single-Cell Transcriptomics
We will use single-cell transcriptomics across tetrapod clades to unravel the core and variable transcriptional network of sex determination. -
Single-Cell Epigenomics
Single-cell epigenomics and novel chromatin interaction methods will reconstruct 3D regulatory landscapes and infer sources of regulatory variation. -
Phylogenomic Comparative Strategies
With phylogenomic comparative strategies, we will estimate the contribution of different types of mutations to different sex determination programs, as well as the impact of whole genome duplications. -
Transgenic Methods
Finally, we will develop innovative transgenic methods for inter-species replacement of 3D regulatory landscapes, using this technology to activate early estrogen synthesis in mice.
Expected Outcomes
3D-REVOLUTION will provide ground-breaking insights on the evolution of gene regulation. This will improve our understanding of the genomic sources and underlying mechanisms of phenotypical variation, which are relevant for developmental and evolutionary genetics.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.998.217 |
Totale projectbegroting | € 1.998.217 |
Tijdlijn
Startdatum | 1-7-2023 |
Einddatum | 30-6-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICASpenvoerder
- MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Deciphering Gene Regulatory Networks governing Mammalian Sex DeterminationThis project aims to unravel the gene regulatory networks of mammalian sex determination using advanced techniques to enhance understanding of gonad development and related disorders. | ERC STG | € 1.651.868 | 2022 | Details |
Genetic Engineering of Regulatory EvolutionGenRevo aims to uncover how regulatory sequences influence gene expression and phenotypes by re-engineering bat wing genetics in mice, advancing understanding of non-coding DNA's role in evolution and disease. | ERC ADG | € 2.490.354 | 2022 | Details |
Studying the cis-regulatory changes that have shaped human evolutionThis project aims to uncover the genetic basis of human adaptation by using hybrid cells and MPRAs to map cis-regulatory changes and their impact on gene expression and phenotypes. | ERC STG | € 1.500.000 | 2023 | Details |
Uncovering the role and regulation of 3D DNA-RNA nuclear dynamics in controlling cell fate decisionsThis project aims to elucidate the interplay between 3D genome organization and transcriptome dynamics in early mouse embryos to identify factors influencing cell fate decisions. | ERC STG | € 1.500.000 | 2023 | Details |
Deciphering Gene Regulatory Networks governing Mammalian Sex Determination
This project aims to unravel the gene regulatory networks of mammalian sex determination using advanced techniques to enhance understanding of gonad development and related disorders.
Genetic Engineering of Regulatory Evolution
GenRevo aims to uncover how regulatory sequences influence gene expression and phenotypes by re-engineering bat wing genetics in mice, advancing understanding of non-coding DNA's role in evolution and disease.
Studying the cis-regulatory changes that have shaped human evolution
This project aims to uncover the genetic basis of human adaptation by using hybrid cells and MPRAs to map cis-regulatory changes and their impact on gene expression and phenotypes.
Uncovering the role and regulation of 3D DNA-RNA nuclear dynamics in controlling cell fate decisions
This project aims to elucidate the interplay between 3D genome organization and transcriptome dynamics in early mouse embryos to identify factors influencing cell fate decisions.