Systems Materials Engineering for High-Rate Bulk Solid-State Conversion in Metal-Sulfur Batteries
This project aims to enhance metal-sulfur batteries' performance by innovating solid-state sulfur phase transformation methods, improving cycle life and energy density through advanced materials engineering.
Projectdetails
Introduction
Batteries will be key in our efforts to reduce CO2 emissions but require major progress in sustainability, cost, and energy density. Liquid-electrolyte metal-sulfur batteries would be game-changers in many respects: a theoretical capacity amongst the highest of all batteries paired with the low cost and sustainability of sulfur.
Challenges with Sulfur
However, intrinsic obstacles are imposed by the electronically and ionically insulating nature of sulfur. Converting sulfur during discharge/charge is fundamentally different from mixed-conducting storage materials. While Li-ion battery materials transform in the solid-state, sulfur converts to metal sulfides in a solid-liquid-solid process. This causes poor cycle life and insufficient energy densities.
Project Approach
In this project, we approach the fundamental challenge of sulfur phase transformation in a novel way: high-rate conversion in the bulk solid-state.
Advanced Metrologies
We will pioneer advanced metrologies such as:
- Cryo-electron microscopy
- In situ grazing incidence scattering with stochastic modeling
These techniques will be used to quantify the phase evolution during electrochemical sulfur conversion at atomic and mesoscopic (1-1000 nm) length scales.
Experimental Foundations
Based on systematic experiments on 2D transition metal carbide (MXene) substrates, we will establish the scientific foundations of:
- Solid-liquid-solid and solid-state sulfur phase transformation.
Cathode Formation
Finally, we will form cathodes as artificial solid mixed conductors by structuring sulfides and MXenes to enable high-rate bulk solid-state sulfur conversion. This will solve the cycle life issue of Me-S batteries and boost the stored energy by maximizing the sulfur packing density.
Foundation of SOLIDCON
The foundation of SOLIDCON is a systems materials engineering approach, identifying how mutual structuring of storage materials, electron conductors, and ion conductors defines the physicochemical processes across length scales:
- Electron transport
- Ion transport
- Mass transport
- Electrochemical conversion
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.374.448 |
Totale projectbegroting | € 2.374.448 |
Tijdlijn
Startdatum | 1-9-2023 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- PARIS-LODRON-UNIVERSITAT SALZBURGpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MEDIATED BIPHASIC BATTERYThe MeBattery project aims to develop a next-generation flow battery technology that balances sustainability, efficiency, and longevity, using innovative thermodynamic concepts and non-critical materials. | EIC Pathfinder | € 2.508.694 | 2022 | Details |
Functionalized Graphene Based Electrode Material for Lithium Sulfur BatteriesThe FunGraB project aims to develop a cost-effective, sustainable lithium-sulfur battery electrode with enhanced stability and performance through a novel one-step manufacturing process. | ERC POC | € 150.000 | 2022 | Details |
Energy storage with bulk liquid redox materialsThe OMICON project aims to develop low molecular weight organic redox materials for efficient, environmentally friendly energy storage in redox flow batteries, enhancing energy density and sustainability. | ERC POC | € 150.000 | 2022 | Details |
Multi-metal anode: Towards safe and energy dense batteriesMULTIMETALBAT aims to enhance metal anode battery performance and safety by developing multi-cation electrolytes to improve electrodeposition and achieve higher energy densities. | ERC COG | € 1.889.561 | 2023 | Details |
MEDIATED BIPHASIC BATTERY
The MeBattery project aims to develop a next-generation flow battery technology that balances sustainability, efficiency, and longevity, using innovative thermodynamic concepts and non-critical materials.
Functionalized Graphene Based Electrode Material for Lithium Sulfur Batteries
The FunGraB project aims to develop a cost-effective, sustainable lithium-sulfur battery electrode with enhanced stability and performance through a novel one-step manufacturing process.
Energy storage with bulk liquid redox materials
The OMICON project aims to develop low molecular weight organic redox materials for efficient, environmentally friendly energy storage in redox flow batteries, enhancing energy density and sustainability.
Multi-metal anode: Towards safe and energy dense batteries
MULTIMETALBAT aims to enhance metal anode battery performance and safety by developing multi-cation electrolytes to improve electrodeposition and achieve higher energy densities.