Functionalized Graphene Based Electrode Material for Lithium Sulfur Batteries

The FunGraB project aims to develop a cost-effective, sustainable lithium-sulfur battery electrode with enhanced stability and performance through a novel one-step manufacturing process.

Subsidie
€ 150.000
2022

Projectdetails

Introduction

FunGraB project addresses the pressing need for ecofriendly, sustainable, and rechargeable batteries with high capacity, energy density, and long lifespan, which will significantly expand the energy storage market.

Background

With the rapid development and broad application of mobile devices, electric and unmanned vehicles, as well as the rise of smart grids and networks for “the internet of things”, the demand for batteries with higher performance, lower cost, and lower environmental burden is rapidly growing.

In order to address the aforementioned challenges, various strategies emerged over the past few years for the development of advanced composite cathodes designed for high sulfur utilization and stability. In particular, the pinning of sulfur is pursued by engineering materials as high-affinity hosts for sulfur to hinder the shuttling of lithium polysulfides.

Project Goals

FunGraB project aims to deliver the upscaling of an industrially-relevant one-step novel manufacturing process for lithium-sulfur batteries electrode material, enabling a significant boost in the cycling stability, without sacrificing its performance (i.e., capacity).

Implementation Strategy

This will be achieved through the implementation of cost-effective materials and processes along with taking our Technology Readiness Level from 2 to 4, thus shaping a significant business opportunity (enabling us to continue development within an EIC Transition project).

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-4-2022
Einddatum30-9-2023
Subsidiejaar2022

Partners & Locaties

Projectpartners

  • UNIVERZITA PALACKEHO V OLOMOUCIpenvoerder

Land(en)

Geen landeninformatie beschikbaar

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

InnovFund SSC

Low CO2 Footprint Battery Foil for Li-ion Battery Production for Energy Storage

Granges Finspang aims to become a sustainability leader in the European battery foil market by producing low CO2 aluminum foil using innovative technologies and recycled materials.

€ 2.676.706
ERC STG

Engineered Porous Electrodes to Unlock Ultra-low Cost Fe-Air Redox Flow Batteries

This project aims to revolutionize Fe-air redox flow batteries by developing advanced porous electrode materials through interdisciplinary methods for enhanced energy storage performance and durability.

€ 1.999.958
ERC STG

Systems Materials Engineering for High-Rate Bulk Solid-State Conversion in Metal-Sulfur Batteries

This project aims to enhance metal-sulfur batteries' performance by innovating solid-state sulfur phase transformation methods, improving cycle life and energy density through advanced materials engineering.

€ 2.374.448
ERC COG

Unveiling atomic-scale elemental distribution of electrode/electrolyte interfaces and interphase in batteries

This project aims to enhance rechargeable battery performance by using atom probe tomography to investigate solid electrolyte interphase (SEI) formation and its impact on dendrite formation and cycle life.

€ 2.201.834