SubsidieMeesters logoSubsidieMeesters
ProjectenRegelingenAnalyses

Ribosome Heterogeneity as a Determinant of Cellular Identity in Hematopoiesis and Leukemia

This project aims to investigate how ribosome heterogeneity influences cell-type-specific translation and differentiation in hematopoiesis and leukemia, revealing new gene regulation mechanisms.

Subsidie
€ 1.700.000
2023

Projectdetails

Introduction

Differentiation and acquisition of cell identity are fundamental processes in multi-cellular organisms. It is well established that chromatin and RNA mechanisms regulate cell fate determination. Mounting evidence from our lab and others, however, suggests that translation is an additional, until now underappreciated, determinant of cell fate.

Importance of Translation

The importance of translation to differentiation can be gleaned from the hematopoietic system, where a prominent feature of human congenital syndromes, due to mutated ribosomes, is aberrant blood production. Crucially, these mutations lead to distinct cell-type-specific differentiation defects, rather than systemic failure.

Research Question

It remains unclear how congenital (“total-body”) ribosomal mutations only affect particular differentiation paths and manifest in a cell-type-specific fashion. We hypothesize that cell-type-specific ribosomal composition—i.e., ribosome heterogeneity—results in cell-type-specific translation profiles, and therefore represents a crucial layer of gene regulation in cell fate and differentiation.

Objectives

We will explore this hypothesis by pursuing three complementary objectives:

  1. Systematically map ribosome heterogeneity and reveal its function in normal hematopoiesis and leukemia.
  2. Determine how ribosome heterogeneity controls cell-type-specific translatomes and contributes to cellular transformation.
  3. Explore ribosome heterogeneity at single-cell resolution, using novel methodologies we will develop for simultaneous transcription and translatome interrogation.

Methodology

By combining cutting-edge sequencing techniques with extensive genetic manipulations in physiological settings, we will reveal cell-type-specific translation, controlled by cell-type-specific ribosomes, as major regulators of cell fate in health and disease.

Conclusion

Understanding the mechanisms of cell-type-specific translation will provide a new paradigm for elucidating gene expression regulation and for revealing new mechanisms for human diseases.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.700.000
Totale projectbegroting€ 1.700.000

Tijdlijn

Startdatum1-10-2023
Einddatum30-9-2028
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • THE HEBREW UNIVERSITY OF JERUSALEMpenvoerder

Land(en)

Israel

Inhoudsopgave

European Research Council

Financiering tot €10 miljoen voor baanbrekend frontier-onderzoek via ERC-grants (Starting, Consolidator, Advanced, Synergy, Proof of Concept).

Bekijk regeling

Vergelijkbare projecten binnen European Research Council

ProjectRegelingBedragJaarActie

Unraveling Ribosome Heterogeneity: Implications for Metastasis and Beyond

This project aims to map ribosomal heterogeneity in metastatic cancers to uncover how specialized ribosomes influence oncogenic translation and metastasis, potentially identifying new cancer biomarkers and therapies.

ERC Starting...€ 1.500.000
2025
Details

Development of novel integrated sequencing methods to explore translation and its regulatory mechanisms in single cells

This project aims to develop novel multi-omics approaches to quantify translation in single cells, integrating various regulatory mechanisms to enhance understanding of cellular heterogeneity.

ERC Advanced...€ 2.500.000
2023
Details

Translational specialization of cellular identity in embryonic development and disease

TRANSCEND aims to explore how translational specialization factors influence cell-fate decisions in embryogenesis, with a focus on cardiac identity and therapeutic restoration of cardiac function.

ERC Consolid...€ 1.981.555
2023
Details

Uncovering the Diversity of Cell-Cell Interactions that Impact Cell Fates

This project aims to develop a novel method for high-resolution transcriptomic analysis of cellular microenvironments to understand how cell communication influences neural crest cell development and fate.

ERC Starting...€ 1.499.900
2023
Details

Elucidating the interplay between nuclear compartments and transcriptional dynamics during differentiation

DynaDiff aims to explore the role of membraneless organelles in transcriptional regulation during mammalian differentiation using advanced single-cell RNA sequencing techniques.

ERC Starting...€ 1.498.372
2022
Details
ERC Starting...

Unraveling Ribosome Heterogeneity: Implications for Metastasis and Beyond

This project aims to map ribosomal heterogeneity in metastatic cancers to uncover how specialized ribosomes influence oncogenic translation and metastasis, potentially identifying new cancer biomarkers and therapies.

ERC Starting Grant
€ 1.500.000
2025
Details
ERC Advanced...

Development of novel integrated sequencing methods to explore translation and its regulatory mechanisms in single cells

This project aims to develop novel multi-omics approaches to quantify translation in single cells, integrating various regulatory mechanisms to enhance understanding of cellular heterogeneity.

ERC Advanced Grant
€ 2.500.000
2023
Details
ERC Consolid...

Translational specialization of cellular identity in embryonic development and disease

TRANSCEND aims to explore how translational specialization factors influence cell-fate decisions in embryogenesis, with a focus on cardiac identity and therapeutic restoration of cardiac function.

ERC Consolidator Grant
€ 1.981.555
2023
Details
ERC Starting...

Uncovering the Diversity of Cell-Cell Interactions that Impact Cell Fates

This project aims to develop a novel method for high-resolution transcriptomic analysis of cellular microenvironments to understand how cell communication influences neural crest cell development and fate.

ERC Starting Grant
€ 1.499.900
2023
Details
ERC Starting...

Elucidating the interplay between nuclear compartments and transcriptional dynamics during differentiation

DynaDiff aims to explore the role of membraneless organelles in transcriptional regulation during mammalian differentiation using advanced single-cell RNA sequencing techniques.

ERC Starting Grant
€ 1.498.372
2022
Details

SubsidieMeesters logoSubsidieMeesters

Vind en verken subsidieprojecten in Nederland en Europa.

Links

  • Projecten
  • Regelingen
  • Analyses

Suggesties

Heb je ideeën voor nieuwe features of verbeteringen?

Deel je suggestie
© 2025 SubsidieMeesters. Alle rechten voorbehouden.