Spatio-temporal coupling between transcription and translation dynamics during development

LightRNA2Prot investigates the mechanisms linking mRNA and protein expression to enhance understanding of gene regulation and cell fate decisions during development using quantitative imaging in Drosophila embryos.

Subsidie
€ 2.000.000
2023

Projectdetails

Introduction

During development, precise control of gene expression allows the reproducible establishment of patterns, leading to the adoption of cellular identities at the right time and place. What are the mechanisms behind such precision?

Background

To date, this question has been primarily examined from the focal point of transcription. However, precision in mRNA production is functionally relevant only if it leads to precision in protein expression. While the linear correlation between the levels of a given mRNA and the amount of protein it encodes has been assumed for the last six decades within the central dogma of molecular biology, many examples challenge this view.

Mechanisms of Translation Control

The control of translation, particularly in distinct subcellular compartments where mRNAs are targeted, may lie at the heart of this mRNA to protein disconnect.

Project Goals

LightRNA2Prot aims to unravel the mechanisms underlying the lack of correlation between mRNA and protein levels to elucidate the sources of reproducible cell fate decisions during development. Importantly, it considers both the layers of regulation constituted by transcription and translation respectively, as well as their potential coupling.

Methodology

We will use quantitative imaging methods that simultaneously monitor mRNA, nascent peptides, and protein in Drosophila living embryos, combined with genetic/optogenetic manipulations to dissect the mechanisms at play.

Key Questions

LightRNA2Prot focuses on two key questions:

  1. How do the translation dynamics of key localized developmental transcripts modulate precise patterning?
  2. How are (co)-transcriptional nuclear events coordinated with translational control in space and time?

Expected Outcomes

Combined with mathematical modeling and phenotypic characterization, our quantitative approaches will provide a dynamic multiscale view of gene expression control in vivo. The novel integration of translational control has the potential to dramatically change our view of stereotypic pattern formation and reproducible cell fate decisions during development.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 2.000.000
Totale projectbegroting€ 2.000.000

Tijdlijn

Startdatum1-1-2023
Einddatum31-12-2027
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRSpenvoerder

Land(en)

France

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Elucidating the interplay between nuclear compartments and transcriptional dynamics during differentiation

DynaDiff aims to explore the role of membraneless organelles in transcriptional regulation during mammalian differentiation using advanced single-cell RNA sequencing techniques.

€ 1.498.372
ERC ADG

Development of novel integrated sequencing methods to explore translation and its regulatory mechanisms in single cells

This project aims to develop novel multi-omics approaches to quantify translation in single cells, integrating various regulatory mechanisms to enhance understanding of cellular heterogeneity.

€ 2.500.000
ERC STG

Uncovering the role and regulation of 3D DNA-RNA nuclear dynamics in controlling cell fate decisions

This project aims to elucidate the interplay between 3D genome organization and transcriptome dynamics in early mouse embryos to identify factors influencing cell fate decisions.

€ 1.500.000
ERC STG

Shedding light on three-dimensional gene regulation

This project aims to elucidate gene expression regulation during differentiation using an ultra-fast optogenetic system and high-resolution genomic tools to study 3D chromatin interactions.

€ 1.500.000