Rewiring gene regulatory circuits to enhance central nervous system repair
This project aims to rewire gene expression in mammalian neural stem cells using synthetic enhancers to promote regeneration after CNS injury, enhancing cell replacement and gene therapy strategies.
Projectdetails
Introduction
The mammalian central nervous system (CNS) is the epitome of complex cellular architecture. Still, it has a limited capacity to self-repair after an injury, which contrasts with the regenerative potential of the CNS in lower vertebrates. Regeneration unfolds by the orchestrated triggering of developmental gene expression programs after injury.
Gene Regulation and Injury Response
These programs are under the control of dedicated regeneration enhancer elements, which grant adult cells transcriptional access to developmental genes. Neural stem cells in the mammalian CNS lack the gene regulatory circuits that dictate when and where to activate the expression of developmental genes for regeneration. Consequently, most of the cells lost to injury are never replaced.
Project Aim
This proposal aims to rewire mammalian gene expression circuits to endow neural stem cells with the capacity to activate regenerative responses after injury.
Methodology
-
Identification of Enhancer Elements
Building on innovative technologies, some of which I developed, we will identify injury-responsive enhancer elements in the mouse spinal cord with single cell and spatiotemporal resolution. -
Decoding DNA Elements
Using machine learning, we will decode the rules of injury-sensing DNA elements to design synthetic injury-responsive enhancers for precise gene expression control in neural stem cells. -
Therapeutic Application
Finally, we will use synthetic enhancers in therapeutically relevant gene delivery systems to rewire gene circuits in order to promote the recruitment of resident stem cells for cell replacement through the reactivation of developmental genes that would otherwise remain silent.
Expected Outcomes
The proposed research will uncover basic principles of gene regulation after CNS injury and open new avenues for the design of smart gene therapies for regenerative medicine using synthetic regeneration enhancers.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-5-2023 |
Einddatum | 30-4-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- KAROLINSKA INSTITUTETpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Mechanisms and consequences of cell state transitions during heart regenerationThis project aims to uncover the coordinated cellular responses in zebrafish heart regeneration post-injury using single-cell genomics and computational methods to enhance understanding of organ repair mechanisms. | ERC COG | € 2.000.000 | 2023 | Details |
PErPetuating Stemness: From single-cell analysis to mechanistic spatio-temporal models of neural stem cell dynamicsThis project aims to decode the mechanisms of neural stem cell heterogeneity and behavior through experimental and mathematical approaches, enhancing understanding and manipulation of stemness. | ERC SyG | € 10.858.174 | 2023 | Details |
IMPROVING THE EFFECTIVENESS AND SAFETY OF EPIGENETIC EDITING IN BRAIN REGENERATIONREGENERAR aims to develop a non-viral delivery system to reprogram glial cells into neurons for treating CNS injuries, focusing on safety, targeting, and stakeholder collaboration. | EIC Pathfinder | € 2.943.233 | 2024 | Details |
Mechanisms and consequences of cell state transitions during heart regeneration
This project aims to uncover the coordinated cellular responses in zebrafish heart regeneration post-injury using single-cell genomics and computational methods to enhance understanding of organ repair mechanisms.
PErPetuating Stemness: From single-cell analysis to mechanistic spatio-temporal models of neural stem cell dynamics
This project aims to decode the mechanisms of neural stem cell heterogeneity and behavior through experimental and mathematical approaches, enhancing understanding and manipulation of stemness.
IMPROVING THE EFFECTIVENESS AND SAFETY OF EPIGENETIC EDITING IN BRAIN REGENERATION
REGENERAR aims to develop a non-viral delivery system to reprogram glial cells into neurons for treating CNS injuries, focusing on safety, targeting, and stakeholder collaboration.