Mechanisms and consequences of cell state transitions during heart regeneration
This project aims to uncover the coordinated cellular responses in zebrafish heart regeneration post-injury using single-cell genomics and computational methods to enhance understanding of organ repair mechanisms.
Projectdetails
Introduction
Organs consist of cells with a large diversity of specialized roles. A fundamental question is how these cells mount a coordinated response in space and time to maintain or restore organ function after perturbation. Recent progress in single-cell genomics has generated the opportunity to understand this process on a system-wide scale.
Model System
We will use the adult zebrafish heart as a powerful model system to dissect how regeneration after injury is orchestrated by the activation response of multiple different cell types.
Objectives
To understand how activated cell states are generated and how they interact to drive the regenerative process, we will:
-
Define which cell types react to injury and measure their activation profiles.
We will develop new experimental and computational strategies for measuring cell states, including a “molecular time machine” that records the past transcriptome of single cells based on RNA labeling. -
Discover the mechanisms that induce cell state activation upon injury.
We will combine single-cell transcriptomics and open chromatin profiling to infer gene regulatory networks, and we will use functional experiments to validate the identified pathways. -
Reveal pro-regenerative cell types and understand their role in the regenerative process.
We will combine spatial transcriptomics and computational analysis to identify putative cellular interactions, and we will use targeted cell type depletion and signaling inhibition to confirm our findings.
Conclusion
In this manner, we will provide the first comprehensive view of how cell type activation leads to a synergistic response in organ regeneration. Furthermore, the approaches and concepts developed in this project will be applicable to other systems in regeneration and beyond. Finally, understanding the underlying mechanisms in zebrafish, the preeminent model for heart regeneration, will open up exciting avenues for awakening the dormant regenerative potential of the human heart.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-3-2023 |
Einddatum | 29-2-2028 |
Subsidiejaar | 2023 |
Partners & Locaties
Projectpartners
- MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)penvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Rewiring gene regulatory circuits to enhance central nervous system repairThis project aims to rewire gene expression in mammalian neural stem cells using synthetic enhancers to promote regeneration after CNS injury, enhancing cell replacement and gene therapy strategies. | ERC STG | € 1.500.000 | 2023 | Details |
Harnessing Novel Micropeptides in Cardiomyocytes to promote Cardiac RegenerationNovel.CaRe aims to enhance cardiac regeneration post-myocardial infarction by using micropeptides to stimulate cardiomyocyte proliferation and maturation through innovative gene therapy approaches. | ERC STG | € 1.592.281 | 2024 | Details |
Programming the EPIcardium to CURE broken heartsEPICURE aims to decode human epicardial development and regeneration using pluripotent stem cell-derived epicardioids, enhancing insights for cardiac repair through advanced imaging and CRISPR techniques. | ERC ADG | € 2.499.999 | 2024 | Details |
The transcriptional regulation of cardiomyocyte polyploidization and its relevance in cardiac regenerationREACTIVA aims to promote heart regeneration by reactivating adult diploid cardiomyocytes through a newly identified regulatory network and inhibiting a specific transcription factor. | ERC ADG | € 2.500.000 | 2024 | Details |
Rewiring gene regulatory circuits to enhance central nervous system repair
This project aims to rewire gene expression in mammalian neural stem cells using synthetic enhancers to promote regeneration after CNS injury, enhancing cell replacement and gene therapy strategies.
Harnessing Novel Micropeptides in Cardiomyocytes to promote Cardiac Regeneration
Novel.CaRe aims to enhance cardiac regeneration post-myocardial infarction by using micropeptides to stimulate cardiomyocyte proliferation and maturation through innovative gene therapy approaches.
Programming the EPIcardium to CURE broken hearts
EPICURE aims to decode human epicardial development and regeneration using pluripotent stem cell-derived epicardioids, enhancing insights for cardiac repair through advanced imaging and CRISPR techniques.
The transcriptional regulation of cardiomyocyte polyploidization and its relevance in cardiac regeneration
REACTIVA aims to promote heart regeneration by reactivating adult diploid cardiomyocytes through a newly identified regulatory network and inhibiting a specific transcription factor.