Quantum Engineering of Superconducting Array Detectors In Low-Light Applications
QuESADILLA aims to revolutionize optical measurements by developing SNSPD arrays for enhanced single-photon detection, integrating advanced technologies for unprecedented resolution in various scientific fields.
Projectdetails
Introduction
Optical measurements are fundamental to experimental science and observations of nature. At the single photon level, superconducting nanowire single-photon detectors (SNSPDs) are well-established as the gold standard in measurement, due to their near-unit efficiency, negligible noise, and ultrafast response.
Objectives
Building SNSPD arrays and simultaneously extracting intensity, spectral, and spatial resolution from a device at the single photon level will revolutionize:
- Astronomical measurements
- Spectrometry in chemistry and life sciences
- Quantum imaging
Key Concepts
Key to unlocking this potential is to marry concepts from:
- Detector tomography with robust high-yield detector fabrication
- The integration of complementary optical technologies
- Low heat-load scalable readout schemes
Project Overview
QuESADILLA tackles these challenges head-on, with a series of experiments demonstrating the groundbreaking potential of quantum detector engineering. In contrast to engineering quantum states of light for metrology, QuESADILLA will shift that paradigm by engineering the quantum mechanical response of the detector itself.
Innovations
QuESADILLA introduces the concepts of:
- A modal decomposition of the positive operator valued measure (POVM)
- Quantum-enhanced POVM engineering in low-light applications
To do so, arrays of SNSPDs in combination with lithographically-written etalons and dielectric coatings will be developed, in concert with state-of-the-art scalable approaches to large scale quantum tomography.
Expected Outcomes
QuESADILLA will exceed the state of the art in many areas, including:
- Performing the first modal decomposition of detector tomography
- The largest tomographic reconstruction of a quantum detector
- The first demonstration of quantum detector engineering using nonclassical ancilla states
- The first demonstration of etalon array reconstructive spectrometry with single photons
- Exploiting the fastest electronic shutter speed of any optical sensor to enable the highest dynamic range detection of continuous illumination
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.844.350 |
Totale projectbegroting | € 1.844.350 |
Tijdlijn
Startdatum | 1-9-2022 |
Einddatum | 31-8-2028 |
Subsidiejaar | 2022 |
Partners & Locaties
Projectpartners
- UNIVERSITAET PADERBORNpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Quantum Microwave Detection with Diamond SpinsQuMicro aims to develop advanced quantum microwave detection devices with ultrahigh sensitivity and resolution, enabling rapid measurements for diverse applications and commercial scalability. | EIC Pathfinder | € 2.914.056 | 2022 | Details |
Design and Engineering of Optoelectronic MetamaterialsThis project aims to engineer tunable optoelectronic metamaterials using colloidal quantum dots and metal halide perovskites to enhance device performance in the visible and near-infrared spectrum. | ERC ADG | € 2.500.000 | 2022 | Details |
2D Topological Superconducting Single Photon Detector DevicesThis project aims to develop advanced superconducting single photon detectors using magnetic topological insulators to enhance efficiency and reduce jitter for scalable quantum technologies. | ERC POC | € 150.000 | 2023 | Details |
Developing First-in-Class Diamond-based Quantum Microscopy for immediate semiconductor industry applicationsQuantumDiamonds is developing a Super-resolution Quantum Imager for the semiconductor industry to achieve sub-100 nm imaging resolution and rapid diagnostics for chip defects, aiming for commercialization. | EIC Accelerator | € 2.475.229 | 2024 | Details |
Quantum Microwave Detection with Diamond Spins
QuMicro aims to develop advanced quantum microwave detection devices with ultrahigh sensitivity and resolution, enabling rapid measurements for diverse applications and commercial scalability.
Design and Engineering of Optoelectronic Metamaterials
This project aims to engineer tunable optoelectronic metamaterials using colloidal quantum dots and metal halide perovskites to enhance device performance in the visible and near-infrared spectrum.
2D Topological Superconducting Single Photon Detector Devices
This project aims to develop advanced superconducting single photon detectors using magnetic topological insulators to enhance efficiency and reduce jitter for scalable quantum technologies.
Developing First-in-Class Diamond-based Quantum Microscopy for immediate semiconductor industry applications
QuantumDiamonds is developing a Super-resolution Quantum Imager for the semiconductor industry to achieve sub-100 nm imaging resolution and rapid diagnostics for chip defects, aiming for commercialization.