2D Topological Superconducting Single Photon Detector Devices

This project aims to develop advanced superconducting single photon detectors using magnetic topological insulators to enhance efficiency and reduce jitter for scalable quantum technologies.

Subsidie
€ 150.000
2023

Projectdetails

Introduction

Superconducting single photon detectors are critical components for emerging quantum technologies due to their high detection efficiencies, short jitter, photon number resolution, high maximum, and low dark count rates. These devices may enable new ground-breaking applications in topological quantum computing and quantum internet.

Challenges with Current Technologies

Niobium-based nanowires (Nb, NbN) are some of the most used superconductors for photodetection, but their material characteristics, device jitter, and efficiencies cannot be effectively tuned or reproduced for scalable quantum technology deployment.

The structural and electronic properties of these nanowires are not suitable for scalable cryogenic or room temperature readout. The challenges in growing high-quality quantum materials consistently provide a significant bottleneck against the development of quantum technologies that might efficiently interface with conventional microelectronics.

Project Overview

In my ERC Grant (948063), we are using our pulsed laser deposition (PLD) and molecular beam epitaxy (MBE) expertise for magnetic topological insulators (MTI) and garnets for spintronic and superconducting devices with high conversion efficiency between electronic spins and charges.

Proposed Prototypes

Here, I propose to develop three prototypes and obtain their patents:

  1. MTI Superconductor-based Single Photon Detectors: Three MTI superconductor-based single photon detector prototypes with beyond state-of-the-art high efficiencies and ultralow jitter owing to the unique properties of MTI such as ultrafast sub-ps magnetization reversal, ballistic transport of Dirac electrons along the interfaces, and integrated spin logic.

  2. Supply of High-Quality Films: We are going to provide a steady supply of high-quality superconductor and spintronic films (NbN, MTI, and magnetic garnets) to accelerate basic and applied research, which is a market growing at about 20% annual rate.

  3. Custom Low-Cost Cryostat: A custom low-cost cryostat for 2-3K detector tests will be prepared with fiber optical and RF cable feedthroughs, electromagnets, readout electronics, and software.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 150.000
Totale projectbegroting€ 150.000

Tijdlijn

Startdatum1-2-2023
Einddatum31-7-2024
Subsidiejaar2023

Partners & Locaties

Projectpartners

  • KOC UNIVERSITYpenvoerder

Land(en)

Türkiye

Vergelijkbare projecten binnen European Research Council

ERC STG

MANUNKIND: Determinants and Dynamics of Collaborative Exploitation

This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.

€ 1.497.749
ERC STG

Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure

The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.

€ 1.498.280
ERC STG

Uncovering the mechanisms of action of an antiviral bacterium

This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.

€ 1.500.000
ERC STG

The Ethics of Loneliness and Sociability

This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.

€ 1.025.860

Vergelijkbare projecten uit andere regelingen

ERC STG

Tailoring Quantum Matter on the Flatland

This project aims to experimentally realize and manipulate 2D topological superconductors in van der Waals heterostructures using advanced nanofabrication and probing techniques.

€ 1.976.126
ERC STG

Quantum Engineering of Superconducting Array Detectors In Low-Light Applications

QuESADILLA aims to revolutionize optical measurements by developing SNSPD arrays for enhanced single-photon detection, integrating advanced technologies for unprecedented resolution in various scientific fields.

€ 1.844.350
ERC ADG

New superconducting quantum-electric device concept utilizing increased anharmonicity, simple structure, and insensitivity to charge and flux noise

ConceptQ aims to develop a novel superconducting qubit with high fidelity and power efficiency, enhancing quantum computing and enabling breakthroughs in various scientific applications.

€ 2.498.759
ERC ADG

Interplay between Chirality, Spin Textures and Superconductivity at Manufactured Interfaces

SUPERMINT aims to develop a high-performance, non-volatile cryogenic memory using superconductivity and spintronics to enhance quantum computing efficiency through innovative magnetic interfaces.

€ 3.188.750