SubsidieMeesters logoSubsidieMeesters
ProjectenRegelingenAnalyses

Quantum Controlled X-ray Spectroscopy of Elementary Molecular Dynamics

QuantXS aims to revolutionize time-resolved X-ray spectroscopy by developing quantum-controlled methods to monitor molecular photochemistry with unprecedented precision.

Subsidie
€ 1.401.103
2024

Projectdetails

Introduction

Elementary processes in nature, chemical synthesis, and functional materials critically rely on photochemical transformations. Monitoring these events on the most fundamental level and recording movies of individual molecular motions has been a long-standing dream of chemists and physicists.

Time-Resolved Spectroscopy

To this end, time-resolved spectroscopy uses carefully timed sequences of short laser pulses to concatenate stroboscopic frames of information, in analogy to a video camera. This has recently been pushed to the X-ray domain, where ultrabright femto- and attosecond laser pulses enable scientists to monitor nuclear and electronic motions in real-time.

Challenges

However, key features remain elusive due to their intrinsic weakness and the high complexity of their coupled dynamics.

Project Goal

My primary goal is to tackle this challenge and develop methods capable of monitoring fundamental molecular photochemistry with unprecedented precision.

QuantXS Program

QuantXS is a theoretical program that puts forward the completely novel concept of quantum-controlled X-ray spectroscopy. I specifically propose to implement pulse shaping techniques at the pump, amplification, and probe stage of time-resolved X-ray measurements.

Objectives

This will tailor the spectroscopic pulse sequence for maximum specificity to so far unmeasured signatures of elementary molecular events. To achieve this, I will implement a bottom-up approach starting with the quantum dynamical simulation of a photochemical ring opening and its transient X-ray signals.

Methodology

I will then use optimal control theory to shape light pulses that:

  1. Maximize the observable absorption, emission, and energy redistribution of existing, weak signatures and bring them above the detection threshold.
  2. Explore entirely new parameter regimes for time-resolved X-ray spectroscopy to generate conceptually new signals.

Conclusion

By demonstrating these applications, QuantXS will push ultrafast X-ray sciences to new frontiers in its endeavor to measure the fundamental properties of matter.

Financiële details & Tijdlijn

Financiële details

Subsidiebedrag€ 1.401.103
Totale projectbegroting€ 1.401.103

Tijdlijn

Startdatum1-1-2024
Einddatum31-12-2028
Subsidiejaar2024

Partners & Locaties

Projectpartners

  • MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder

Land(en)

Germany

Inhoudsopgave

European Research Council

Financiering tot €10 miljoen voor baanbrekend frontier-onderzoek via ERC-grants (Starting, Consolidator, Advanced, Synergy, Proof of Concept).

Bekijk regeling

Vergelijkbare projecten binnen European Research Council

ProjectRegelingBedragJaarActie

Phase-Locked Photon-Electron Interactions for Ultrafast Spectroscopy beyond T2

Develop a platform for ultrafast electron-beam spectroscopy to investigate quantum dynamics in solid-state networks, enhancing measurements beyond T2 with unprecedented temporal and spatial resolution.

ERC Consolid...€ 2.000.000
2025
Details

Multidimensional interferometric photoelectron spectroscopy with extreme ultraviolet photons

This project aims to establish ultrafast multidimensional extreme ultraviolet photoelectron spectroscopy to map and analyze photochemical reactions at the quantum level with high resolution.

ERC Starting...€ 1.577.500
2023
Details

QUANTUM-ENHANCED FREE-ELECTRON SPECTROMICROSCOPY

QUEFES aims to revolutionize ultrafast electron microscopy by leveraging quantum properties of free electrons to enhance imaging and control of nanomaterials' atomic-scale dynamics.

ERC Advanced...€ 2.497.225
2024
Details

Ultrafast atomic-scale imaging and control of nonequilibrium phenomena in quantum materials

The project aims to utilize ultrafast Terahertz-lightwave-driven scanning tunneling microscopy to explore and induce new quantum properties in correlated electron states at atomic scales.

ERC Starting...€ 1.572.500
2025
Details

Ultrafast topological engineering of quantum materials

The project aims to develop innovative methodologies for real-time monitoring of ultrafast topological phase transitions in quantum materials using tailored light pulses and advanced photoemission techniques.

ERC Starting...€ 1.754.304
2023
Details
ERC Consolid...

Phase-Locked Photon-Electron Interactions for Ultrafast Spectroscopy beyond T2

Develop a platform for ultrafast electron-beam spectroscopy to investigate quantum dynamics in solid-state networks, enhancing measurements beyond T2 with unprecedented temporal and spatial resolution.

ERC Consolidator Grant
€ 2.000.000
2025
Details
ERC Starting...

Multidimensional interferometric photoelectron spectroscopy with extreme ultraviolet photons

This project aims to establish ultrafast multidimensional extreme ultraviolet photoelectron spectroscopy to map and analyze photochemical reactions at the quantum level with high resolution.

ERC Starting Grant
€ 1.577.500
2023
Details
ERC Advanced...

QUANTUM-ENHANCED FREE-ELECTRON SPECTROMICROSCOPY

QUEFES aims to revolutionize ultrafast electron microscopy by leveraging quantum properties of free electrons to enhance imaging and control of nanomaterials' atomic-scale dynamics.

ERC Advanced Grant
€ 2.497.225
2024
Details
ERC Starting...

Ultrafast atomic-scale imaging and control of nonequilibrium phenomena in quantum materials

The project aims to utilize ultrafast Terahertz-lightwave-driven scanning tunneling microscopy to explore and induce new quantum properties in correlated electron states at atomic scales.

ERC Starting Grant
€ 1.572.500
2025
Details
ERC Starting...

Ultrafast topological engineering of quantum materials

The project aims to develop innovative methodologies for real-time monitoring of ultrafast topological phase transitions in quantum materials using tailored light pulses and advanced photoemission techniques.

ERC Starting Grant
€ 1.754.304
2023
Details

SubsidieMeesters logoSubsidieMeesters

Vind en verken subsidieprojecten in Nederland en Europa.

Links

  • Projecten
  • Regelingen
  • Analyses

Suggesties

Heb je ideeën voor nieuwe features of verbeteringen?

Deel je suggestie
© 2025 SubsidieMeesters. Alle rechten voorbehouden.