Quantum Controlled X-ray Spectroscopy of Elementary Molecular Dynamics
QuantXS aims to revolutionize time-resolved X-ray spectroscopy by developing quantum-controlled methods to monitor molecular photochemistry with unprecedented precision.
Projectdetails
Introduction
Elementary processes in nature, chemical synthesis, and functional materials critically rely on photochemical transformations. Monitoring these events on the most fundamental level and recording movies of individual molecular motions has been a long-standing dream of chemists and physicists.
Time-Resolved Spectroscopy
To this end, time-resolved spectroscopy uses carefully timed sequences of short laser pulses to concatenate stroboscopic frames of information, in analogy to a video camera. This has recently been pushed to the X-ray domain, where ultrabright femto- and attosecond laser pulses enable scientists to monitor nuclear and electronic motions in real-time.
Challenges in Observation
However, key features remain elusive due to their intrinsic weakness and the high complexity of their coupled dynamics.
Project Goals
My primary goal is to tackle this challenge and develop methods capable of monitoring fundamental molecular photochemistry with unprecedented precision.
QuantXS Program
QuantXS is a theoretical program that puts forward the completely novel concept of quantum-controlled X-ray spectroscopy. I specifically propose to implement pulse shaping techniques at the pump, amplification, and probe stage of time-resolved X-ray measurements.
Objectives
This will tailor the spectroscopic pulse sequence for maximum specificity to so far unmeasured signatures of elementary molecular events. To achieve this, I will implement a bottom-up approach starting with the quantum dynamical simulation of a photochemical ring opening and its transient X-ray signals.
Methodology
I will then use optimal control theory to shape light pulses that:
- Maximize the observable absorption, emission, and energy redistribution of existing, weak signatures and bring them above the detection threshold.
- Explore entirely new parameter regimes for time-resolved X-ray spectroscopy to generate conceptually new signals.
Conclusion
By demonstrating these applications, QuantXS will push ultrafast X-ray sciences to new frontiers in its endeavor to measure the fundamental properties of matter.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.401.103 |
Totale projectbegroting | € 1.401.103 |
Tijdlijn
Startdatum | 1-1-2024 |
Einddatum | 31-12-2028 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EVpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
QUANTUM-ENHANCED FREE-ELECTRON SPECTROMICROSCOPYQUEFES aims to revolutionize ultrafast electron microscopy by leveraging quantum properties of free electrons to enhance imaging and control of nanomaterials' atomic-scale dynamics. | ERC ADG | € 2.497.225 | 2024 | Details |
Phase-Locked Photon-Electron Interactions for Ultrafast Spectroscopy beyond T2Develop a platform for ultrafast electron-beam spectroscopy to investigate quantum dynamics in solid-state networks, enhancing measurements beyond T2 with unprecedented temporal and spatial resolution. | ERC COG | € 2.000.000 | 2025 | Details |
QUANTUM-ENHANCED FREE-ELECTRON SPECTROMICROSCOPY
QUEFES aims to revolutionize ultrafast electron microscopy by leveraging quantum properties of free electrons to enhance imaging and control of nanomaterials' atomic-scale dynamics.
Phase-Locked Photon-Electron Interactions for Ultrafast Spectroscopy beyond T2
Develop a platform for ultrafast electron-beam spectroscopy to investigate quantum dynamics in solid-state networks, enhancing measurements beyond T2 with unprecedented temporal and spatial resolution.