Phase-Locked Photon-Electron Interactions for Ultrafast Spectroscopy beyond T2
Develop a platform for ultrafast electron-beam spectroscopy to investigate quantum dynamics in solid-state networks, enhancing measurements beyond T2 with unprecedented temporal and spatial resolution.
Projectdetails
Introduction
Based on my groundbreaking advancements in realizing internal radiation sources inside electron microscopes, generating ultrashort and coherent electromagnetic radiations in interaction with electron beams, I propose to develop a platform for ultrafast and phase-locked electron-beam spectroscopy of solid-state-based quantum networks, beyond the dephasing time T2.
Key Elements
My platform relies on the following key elements:
- Shaping electron wavepackets with light.
- Implementing three-dimensional electron-driven photon sources.
- Employing correlative measurements to unravel the quantum statistics of photons evolving in solid-state-based photonic systems and quantum networks.
This scenario enables an outstanding temporal resolution and an unprecedented degree of mutual coherence between the radiation sources and the near-field of the electron wavepacket itself.
Objectives
By combining these capabilities, I aim to:
- Map the excitation/emission paths.
- Investigate quasi-particle interactions.
- Analyze charge and energy transfer dynamics.
- Explore quantum jump and revival processes at the attosecond timescale and nanometer spatial resolution.
Impact
UltraSpecT opens new horizons in quantum-sensitive measurements, leveraging novel technological advancements in electron microscopes to explore the frontiers of quantum science. It aims to investigate decoherence dynamics beyond T2 using electron microscopes, enabling the exploration and manipulation of photon dynamics in individual single-photon emitters coupled to or embedded in quantum networks.
Interdisciplinary Approach
UltraSpecT's ambitious goals span a highly interdisciplinary field, combining quantum optics with electron microscopy. My team and I will address the ambitious aspects of UltraSpecT by applying our extensive knowledge in both theoretical and experimental aspects of electron – light – matter interactions.
Risk Mitigation
I will further implement a risk mitigation plan that includes employing a variety of methods to realize our required radiation sources and beam shaping strategies.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 2.000.000 |
Totale projectbegroting | € 2.000.000 |
Tijdlijn
Startdatum | 1-6-2025 |
Einddatum | 31-5-2030 |
Subsidiejaar | 2025 |
Partners & Locaties
Projectpartners
- CHRISTIAN-ALBRECHTS-UNIVERSITAET ZU KIELpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
Spatio-temporal shaping of electron wavepackets for time-domain electron holographyThis project aims to develop a tool for quantum coherent shaping of electron wavepackets using light fields, enabling advanced spectroscopy and imaging of optical excitations in nanostructures. | ERC STG | € 1.835.895 | 2023 | Details |
Ultrafast topological engineering of quantum materialsThe project aims to develop innovative methodologies for real-time monitoring of ultrafast topological phase transitions in quantum materials using tailored light pulses and advanced photoemission techniques. | ERC STG | € 1.754.304 | 2023 | Details |
Quantum Controlled X-ray Spectroscopy of Elementary Molecular DynamicsQuantXS aims to revolutionize time-resolved X-ray spectroscopy by developing quantum-controlled methods to monitor molecular photochemistry with unprecedented precision. | ERC STG | € 1.401.103 | 2024 | Details |
QUANTUM-ENHANCED FREE-ELECTRON SPECTROMICROSCOPYQUEFES aims to revolutionize ultrafast electron microscopy by leveraging quantum properties of free electrons to enhance imaging and control of nanomaterials' atomic-scale dynamics. | ERC ADG | € 2.497.225 | 2024 | Details |
Spatio-temporal shaping of electron wavepackets for time-domain electron holography
This project aims to develop a tool for quantum coherent shaping of electron wavepackets using light fields, enabling advanced spectroscopy and imaging of optical excitations in nanostructures.
Ultrafast topological engineering of quantum materials
The project aims to develop innovative methodologies for real-time monitoring of ultrafast topological phase transitions in quantum materials using tailored light pulses and advanced photoemission techniques.
Quantum Controlled X-ray Spectroscopy of Elementary Molecular Dynamics
QuantXS aims to revolutionize time-resolved X-ray spectroscopy by developing quantum-controlled methods to monitor molecular photochemistry with unprecedented precision.
QUANTUM-ENHANCED FREE-ELECTRON SPECTROMICROSCOPY
QUEFES aims to revolutionize ultrafast electron microscopy by leveraging quantum properties of free electrons to enhance imaging and control of nanomaterials' atomic-scale dynamics.