Nanorobotic microgels to control stem cell fate
Developing innovative microgel technology with nanorobotics to enhance stem cell differentiation for improved cardiac regeneration in myocardial infarction patients.
Projectdetails
Introduction
Myocardial infarction continues to claim the lives of millions of people every year, and survivors are often left with severe health issues. Transplanting cardiac cells engineered from human stem cells into the injured heart is a particularly promising approach to repairing damaged cardiac tissue.
Challenges in Stem Cell Therapy
Despite extensive research on stem cell-based therapies, a major limitation is effectively regulating stem cell differentiation. Mechanically training stem cells throughout culture could be a solution, by exploiting their mechanosensitive nature.
Technological Limitations
However, there is currently a lack of technology that can recreate the mechanically dynamic microenvironment of tissue. Therefore, I aim to develop an innovative cell culture technology based on designer microgels and nanorobotics, which will allow control over stem cell differentiation.
Methodology
To achieve this goal, I will:
- Package pluripotent stem cells in smart microgels using microfluidics.
- Rigorously adjust material properties to ensure culture conditions that simulate the native tissue microenvironment.
- Utilize smart microgels with tunable stiffness to improve cardiogenic differentiation in pluripotent stem cells.
- Integrate wirelessly controlled nanoactuators to mechanically train stem cells and decipher the relationship between forces and stem cell differentiation.
Team Collaboration
Together with my team, I will develop rapid culture and stimulation methods based on microfluidics to identify the best conditions for stem cell preparation.
Impact on Regenerative Medicine
This multifunctional technology will contribute to achieving efficient cardiac regeneration and has great potential to make a significant impact in regenerative medicine.
Financiële details & Tijdlijn
Financiële details
Subsidiebedrag | € 1.500.000 |
Totale projectbegroting | € 1.500.000 |
Tijdlijn
Startdatum | 1-11-2024 |
Einddatum | 31-10-2029 |
Subsidiejaar | 2024 |
Partners & Locaties
Projectpartners
- TECHNISCHE UNIVERSITAET MUENCHENpenvoerder
Land(en)
Vergelijkbare projecten binnen European Research Council
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
MANUNKIND: Determinants and Dynamics of Collaborative ExploitationThis project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery. | ERC STG | € 1.497.749 | 2022 | Details |
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressureThe UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance. | ERC STG | € 1.498.280 | 2022 | Details |
Uncovering the mechanisms of action of an antiviral bacteriumThis project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function. | ERC STG | € 1.500.000 | 2023 | Details |
The Ethics of Loneliness and SociabilityThis project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field. | ERC STG | € 1.025.860 | 2023 | Details |
MANUNKIND: Determinants and Dynamics of Collaborative Exploitation
This project aims to develop a game theoretic framework to analyze the psychological and strategic dynamics of collaborative exploitation, informing policies to combat modern slavery.
Elucidating the phenotypic convergence of proliferation reduction under growth-induced pressure
The UnderPressure project aims to investigate how mechanical constraints from 3D crowding affect cell proliferation and signaling in various organisms, with potential applications in reducing cancer chemoresistance.
Uncovering the mechanisms of action of an antiviral bacterium
This project aims to uncover the mechanisms behind Wolbachia's antiviral protection in insects and develop tools for studying symbiont gene function.
The Ethics of Loneliness and Sociability
This project aims to develop a normative theory of loneliness by analyzing ethical responsibilities of individuals and societies to prevent and alleviate loneliness, establishing a new philosophical sub-field.
Vergelijkbare projecten uit andere regelingen
Project | Regeling | Bedrag | Jaar | Actie |
---|---|---|---|---|
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughputHEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments. | ERC COG | € 2.969.219 | 2022 | Details |
Restoring anisotropy in living tissues 'in situ'This project aims to enhance cardiac tissue regeneration by restoring structural anisotropy using ultrasound, improving therapy outcomes through a multidisciplinary and technology-driven approach. | ERC ADG | € 3.056.887 | 2022 | Details |
Engineering a living human Mini-heart and a swimming Bio-robotThe project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease. | EIC Pathfinder | € 4.475.946 | 2022 | Details |
Advanced human models of the heart to understand cardiovascular diseaseHeart2Beat aims to develop innovative 3D human cardiac models using microfluidic technology to enhance understanding and treatment of cardiovascular diseases through personalized medicine. | ERC ADG | € 2.500.000 | 2023 | Details |
3D-assembly of interactive microgels to grow in vitro vascularized, structured, and beating human cardiac tissues in high-throughput
HEARTBEAT aims to create personalized, vascularized millimeter-scale heart tissues using innovative microgel assemblies to enhance stem cell interactions and mimic native environments.
Restoring anisotropy in living tissues 'in situ'
This project aims to enhance cardiac tissue regeneration by restoring structural anisotropy using ultrasound, improving therapy outcomes through a multidisciplinary and technology-driven approach.
Engineering a living human Mini-heart and a swimming Bio-robot
The project aims to develop advanced in vitro human cardiac models, including a vascularized mini-heart and a bio-robot, to better assess cardiotoxicity and improve understanding of cardiovascular disease.
Advanced human models of the heart to understand cardiovascular disease
Heart2Beat aims to develop innovative 3D human cardiac models using microfluidic technology to enhance understanding and treatment of cardiovascular diseases through personalized medicine.